Astro 596/496 PC Lecture 14 Feb. 19, 2010

Announcements:

• PS2 due

Ц

• PF3 out, due next Friday noon short, sweet, and Nobel-packed!

Last time: 21st Century Cosmology begins

Last time: measuring the cosmic expansion history

- identify standard candle: SN Ia
- luminosity distance probes H(z)
- results rather...unexpected!

www: unexpected results

- Q: namely? what's directly observed? inferred?
- *Q: possible explanations?*
- Q: preliminary vote?

Faint SN Ia: Whodunit?

***** Blame the Observations

mabye: SN Ia are *not* reliable standard(izable) candles i.e., $m(obs) \neq m(std candle)$ such that $L_{SN}(highz) < L_{SN}(lowz)$ systematically

★ Blame Einstein

N

observations correct, but expectations based on gravity theory = GR maybe: GR incorrect/incomplete

***** Blame the Universe

observations correct, and GR correct as well, so infer existence of new cosmic contents which create acceleration e.g., acceleration points to an accelerant! maybe: Friedmann OK, but missing terms i.e., beyond matter (including DM!) and radiation new source(s) of ρ , P

What is to be done?

At face value

- SN Ia \Rightarrow U. is accelerating
- RW+Einstein \Rightarrow need new cosmic components

For now: assume these are true; then...

Our Mission

quantify—and ultimately identify—the new stuff see if we can live with the consequences

But don't forget:

- keep checking SN Ia systematics
- don't dismiss gravity beyond Einstein: GR may itself be a limiting case of larger theory just as Newtonian gravity is limit of GR

ω

First step:

Q: Friedmann–what are conditions for acceleration?

Acceleration in a FLRW Universe

Recall:

Cosmo principle (RW metric) + GR

= Friedmann

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2}\right) \tag{1}$$

But SNIa $\rightarrow \ddot{a} > 0$:

$$P < -\frac{1}{3}\rho c^2$$

Q: implications? interpretation?

4

cosmic acceleration demands $P < -\rho c^2/3$

Cosmic pressure is

★ non-negligible

- ★ negative! Q: meaning?
- ★ (for GR experts) violation of strong energy condition $\rho + 3P \ge 0$ fails!

Exotic substance mandatory!

- NR matter and/or radiation in *any* form even wierdo particle dark matter (WIMPs, axions, ...) have P ≥ 0: inadequate!
- new accelerant must be *dark*
 - i.e., has not been undetected in EM radiation
- СЛ
- simplest solution is oldest...

Acceleration and the Cosmological Constant

Originally: Einstein modification of GR to allow for *static* universe: $\ddot{a} = \dot{a} = 0$

- forced to introduce new constant of nature
 cosmological constant ∧
- $[\Lambda] = [length^{-2}];$ alters cosmic geometry
- spoils $GR \rightarrow$ Newtonian limit: instead,

$$\nabla^2 \phi = 4\pi G \rho - \frac{c^2}{3} \Lambda$$

• *Q*: why isn't this immediately fatal?

Cosmo-Sociology: The Checkered History of \wedge

 Λ often invoked to solve cosmo problems, then abandoned when observations improved

"My greatest blunder."

- A. Einstein, allegedly, on inventing Λ

"The cosmological constant is the last refuge of scoundrels."

– famous Chicago cosmologist and current Λ enthusiast, circa 1990

Living with \wedge

With $\Lambda \neq 0$, new term in both Friedmann eqs

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{\kappa c^{2}}{R^{2}a^{2}} + \frac{c^{2}}{3}\Lambda \qquad (2)$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + \frac{3P}{c^{2}}\right) + \frac{c^{2}}{3}\Lambda \qquad (3)$$

Note appearance & sign in acceleration $\Rightarrow \Lambda$ an "accelerant" \rightarrow "antigravity" *Q: intuitive reason? Hint: original purpose?*

convenient to introduce $\Omega_{\Lambda} = \Lambda c^2/3H^2$ allows easy comparison of Λ term with others

 ∞ Q: but you can guess which larger, based on observed accel?

The Data: A Looms Large

SN Ia data in Λ cosmology:

- allow for $\Omega_{\Lambda} = \Lambda c^2/3H^2 \neq 0$
- find best fit to d_L data:
 "concordance universe"

www: $\Omega_{\Lambda} - \Omega_{m}$ plane

$$\Omega_{\Lambda} \simeq 0.7$$
 $\Omega_{m} \simeq 0.3$

(4)

- not only is $\Omega_{\Lambda} \neq 0$, but
- $\Omega_{\Lambda} \gtrsim 2\Omega_{m}$: U dominated by Λ now! Q: if this is all true, cosmic fate?

ဖ

A and Cosmic Fate: Big Chill and Dark Sky

if acceleration is truly due to Λ then:

- already dominates Friedmann
- as a increases, matter & curvature terms drop
 - \rightarrow Λ dominates even more!

The bleak Λ -dominated future:

10

- ★ future $a(t) \simeq e^{\sqrt{\Omega_{\Lambda} H_0(t-t_0)}} \rightarrow \text{exponential expansion forever!}$ fate is not only big chill but supercooling
- ★ event horizon exists: $d_{\text{event,comov}}(t_0) \simeq \Omega_{\Lambda}^{-1/2} d_H \sim 6400 \text{ Mpc}$ we will *never* see beyond this! worse still: later on.

 $d_{\text{event,comov}}(t_0 + \Delta t) = e^{-\sqrt{\Omega_{\Lambda}}H_0\Delta t} d_{\text{event,comov}}(t_0)$ event horizon shrinks exponentially with time! observational astronomy from data mining only!

∧ as Vacuum Energy

Can rewrite Λ as energy density: ρ_Λ : in Friedmann, put

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{\kappa c^2}{R^2 a^2} + \frac{\Lambda c^2}{3} \equiv \frac{8\pi G}{3}(\rho + \rho_{\Lambda}) - \frac{\kappa c^2}{R^2 a^2}$$
 so that

$$\rho_{\Lambda} = \frac{\Lambda c^2}{8\pi G} \text{ and } \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_{\text{crit}}}$$

Then introduce pressure P_{Λ} in Fried accel:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda c^2}{3} \equiv -\frac{4\pi G}{3}(\rho + \rho_{\Lambda} + 3P + 3P_{\Lambda})$$

can show:

$$P_{\Lambda} = -\frac{\Lambda c^2}{8\pi G} = -\rho_{\Lambda}$$

11

i.e., $P_{\Lambda} = w \rho_{\Lambda}$, with w = -1

Note:

- Λ is strict constant $\rightarrow \rho_{\Lambda}$ constant in space and time "energy density of the vacuum" \rightarrow **dark energy**
- $P_{\Lambda} < 0$: as needed for acceleration
- equation of state parameter w = -1 preserves Λ constancy

So: Λ is equivalently a length scale or an energy density *Q: what sets its value?*

\wedge and its Discontents

In Classical GR:
∧ is a (optional) parameter to be measured
> no a priori insight as to its value (beyond escaping solar system limits)

But quantum mechanics & particle physics offer a new perspective on vacuum energy

Recall: blackbody radiation usually write total energy density:

$$\varepsilon_{\text{blackbody}}(T) = \frac{1}{2\pi^2 c^2} \int_{\omega=0}^{\infty} \frac{\hbar\omega}{e^{\hbar\omega/kT} - 1} \omega^2 \ d\omega = a_{\text{Boltz}} T^4$$

note that $\varepsilon \to 0$ as $T \to 0$: vacuum has no energy ...but (Λ aside) this was always a cheat! *Q: why? what omitted?* Uncertainty principle \rightarrow nothing ''at rest''

- \rightarrow ground state "zero point motion"
- \rightarrow zero point modes have energy $E_0 \neq 0$

Blackbody result: treats photon modes as harmonic oscillators but threw away zero point energy $E_0 = \hbar \omega/2!$ Cheated!

- handwaving excuse: *E*₀ cost of "assembling" oscillators/quanta ...and then only energy *differences* count
- in practice, usual Planck result is really $\varepsilon_{\text{usual}} = \varepsilon_{\text{tot}}(T) - \varepsilon_{T=0} = \varepsilon_{\text{tot}}(T) - \varepsilon_{\text{zeropoint}}$
- but in GR: curvature \leftrightarrow mass-energy density absolute energy scales matter! e.g., $(\dot{a}/a)^2 \sim 8\pi G/3 \ \varepsilon/c^2$

14

Q: what if we keep the zero-point energy?

Try keeping zero point energy:

$$\varepsilon \sim \int_0^\infty \langle E(\omega) \rangle \ \omega^2 \ d\omega$$
 (5)

$$= \int_{0}^{\infty} \left(\frac{\hbar\omega}{e^{\hbar\omega/kT} - 1} + E_0 \right) \omega^2 \, d\omega \tag{6}$$
$$= \varepsilon_{\text{usual}} + \varepsilon_{\text{zeropoint}} \tag{7}$$

$$= \varepsilon_{\text{usual}} + \varepsilon_{\text{zeropoint}} \tag{7}$$

where the zero pont contribution is

$$\varepsilon_{\text{zeropoint}} \sim \int_0^\infty \omega^3 \ d\omega = \infty^4$$

"ultraviolet catastrophe"!

Q: possible cures?

Vacuum Energy in Particle Physics

what is cause of catastrophe?

$$\varepsilon_{\text{zeropoint}} \sim \int_0^{\omega_{\text{max}}} \omega^3 \ d\omega \sim \omega_{\text{max}}^4$$

allowed $\omega_{\max} \rightarrow \infty$

 \rightarrow included modes of arbitrarily high energy arbitrarily small wavelength

If quanta energy has upper limit E_{max} i.e., a minimum wavelength $\lambda_{\text{min}} = \hbar c / E_{\text{max}}$ then $\varepsilon_{\text{zeropoint}} \neq \infty$

Q: what might such a limit be? \overline{a} Q: i.e., at what scale might energies "max out"?

The Planck Scale and Λ

Highest known energy scale in physics: Planck Scale when quantum effects become important for gravity

a particle of mass m, energy mc^2 has quantum scale $\lambda_{quantum} = \hbar/mc$ (Compton wavelength) equal to GR scale $\lambda_{GR} = 2Gm/c^2$ (Schwarzchild radius) if $m = M_{Pl}$: the Planck mass

$$M_{\rm Pl}c^2 = \sqrt{\frac{c}{G\hbar}}c^2 \sim 10^{19} \text{ GeV}$$
(8)
$$\ell_{\rm Pl} = \frac{\hbar}{M_{\rm Pl}c} \sim 10^{-33} \text{ cm}$$
(9)

if quanta have $E_{max} = M_{PI}$ and $\lambda_{min} = \ell_{PI}$ then estimate vacuum energy density

 $\stackrel{t_2}{\sim}
ho_{\rm Vac,Pl} \sim M_{\rm Pl}^4 \sim 10^{110} \ {\rm erg/cm^3} \sim 10^{89} \ {\rm g/cm^3}$ Q: implications?