Astro 596/496 PC
 Lecture 18
 March 1, 2010

Announcements:

- PS3 due in class Friday

Last time: began cosmic microwave background Penzias \& Wilson 1965 discovery
Q: antenna temperature? excess?
Q: main physical result?

CMB Discovery: Precursors and Missed Opportunities

CMB discovery limited not by technology but by failure of imagination: nobody bothered to look!

- CMB predicted years before!

Gamow (1948!): primordial nuke demands thermal radiation; should persist today didn't calculate, but could have, $T_{0} \sim 4 \mathrm{~K}$! his students, Alpher \& Herman (1948): explicitly calculate

$$
\begin{equation*}
T_{0}(1948 \text { theoretical estimate })=5 \mathrm{~K} \tag{1}
\end{equation*}
$$

these results were ignored \& forgotten(!!)

- CMB measured years before!

McKellar (1941): www: online paper interstellar C-N molecule seen via line multiplets
excited levels populated as expected if in thermal radiation bath with

$$
\begin{equation*}
T_{0}(\mathrm{CN} \text { excitation, } 1941 \text { observation })=2.5 \mathrm{~K} \tag{2}
\end{equation*}
$$

throwaway line about this being the "temperature of space"!
...but the CMB connection not made until after P\&W

CMB history lessons?
Q: take-home message(s) for practice of science?

The Isotropic CMB: Present Data

Spectrum

best data: FIRAS instrument on
Cosmic Background Explorer (COBE)
Fixsen et al (1996):

- www: $T_{\text {antenna }}$ plot - consistent with purely thermal
- present all-sky temperature

$$
\begin{equation*}
T_{0}=2.725 \pm 0.004 \mathrm{~K} \tag{3}
\end{equation*}
$$

- limits on distortions:
if spectrum has "chemical potential" μ :

$$
\begin{equation*}
I_{\nu}=\frac{2 h}{c^{2}} \frac{\nu^{3}}{e^{h \nu / k T-\mu}-1} \tag{4}
\end{equation*}
$$

then $\mu<9 \times 10^{-5}$
also can put limits on distortion by superposition of blackbody spectra with different T

Polarization

zero on average, but nonzero rms
Q: why can't there be a uniform polarization?
in an isotropic universe: polarization quadrupole
...more on this later

The Physics of the Isotropic CMB

We want to understand:

- what physics leads to the CMB?
- what cosmic epoch(s) does the CMB probe?
- what are the implications of the spectrum exquisitely good Planckian form?

To start, note that the present universe must be transparent to the CMB
Q : why is this?
Q: what does this imply about epoch probed by CMB?
Q: what technology needed to calculate transparency?

The CMB as a Scattering Problem

recall: any observed photon has this life cycle:

- emission
- scattering (possibly none, possibly many times)
- absorption (i.e., detection)
thus: any detected $=$ absorbed photon points back to emission or most recent scattering event e.g., daytime sky: Sun's emission disk vs off-source scattered blue light
the fact that the CMB is a background
to low-z objects \rightarrow late-time U. is transparent to $C M B$
thus: the CMB probes exactly the epoch
v when the universe was last able to scatter photons
i.e., the last time U. was opaque to its thermal photons

CMB as Cosmic "Baby Picture": Last Scattering Surface

> CMB created by (and gives info about)
> epoch of cosmic transition: opaque \rightarrow transparent
but transparent/opaque transition is
controlled by photon scattering
e.g., CMB released at epoch of "last scattering" $z_{\text {Is }}$
\rightarrow CMB sky map is a picture of the U. then:
"surface of last scattering"
www: conformal time diagram

For more detail, e.g., when is $z_{\text {Is }}$?
$\infty \rightarrow$ need scattering technology

Highlights from Scattering 101

Collisions: $a+b \rightarrow$ stuff

Consider particle beam:
"projectiles," number density n_{a}
incident $\mathrm{w} /$ velocity v
on targets of number density n_{b}

Due to interactions, targets and projectiles "see" each other as spheres of projected area $\sigma(v)$: the

cross section

* fundamental measure interaction strength/probability
* atomic, nuke \& particle physics meets astrophysics via σ
\bullet
in time δt, what is avg \# collisions on one target?
Q: what defines "interaction zone" around target?
interaction zone: particles sweep out "scattering tube"
- projectiles see targets as "bulls-eyes" of size σ
...and vice versa!
sets tube cross-sectional area
- tube length $\delta x=v \delta t$
projectiles
$\longrightarrow V$

interaction volume swept around target:
$\delta V=\sigma \delta x=\sigma v \delta t$
collide: if a projectile is in the volume

Cross Section, Flux, and Collision Rate

in tube volume δV, \# projectiles $=\mathcal{N}_{\text {proj }}=n_{a} \delta V$
so ave \# collisions in δt :

$$
\begin{equation*}
\delta \mathcal{N}_{\text {coll }}=\mathcal{N}_{\text {proj }}=n_{\mathrm{a}} \sigma v \delta t \tag{5}
\end{equation*}
$$

so $\delta \mathcal{N}_{\text {coll }} / \delta t$ gives

$$
\text { avg collision rate per target } b \Gamma_{\text {per } b}=n_{a} \sigma v=\sigma j_{a}
$$

where $j_{a}=n_{a} v$ is incident flux
Q: 「 units? sensible scalings n_{a}, σ, v ? why no n_{b} ?

Q: average target collision time interval?
$\stackrel{\square}{ } \quad$: average projectile distance traveled in this time?
estimate avg time between collisions on target b :
mean free time τ
collision rate: $\Gamma=d \mathcal{N}_{\text {coll }} / d t$
so wait time until next collision set by $\delta N_{\text {coll }}=\Gamma_{\text {per } b} \tau=1$:

$$
\begin{equation*}
\tau=\frac{1}{\Gamma_{\operatorname{per} b}}=\frac{1}{n_{a} \sigma v} \tag{6}
\end{equation*}
$$

in this time, projectile a moves distance: mean free path

$$
\begin{equation*}
\ell_{\mathrm{mpf}}=v \tau=\frac{1}{n_{a} \sigma} \tag{7}
\end{equation*}
$$

no explicit v dep, but still $\ell(E) \propto 1 / \sigma(E)$
Q : physically, why the scalings with n, σ ?

Q: what sets σ for billiard balls?
$\stackrel{\rightharpoonup}{\mathrm{N}}$ Q: what set σ for $e^{-}+e^{-}$scattering?

Cross Section vs Particle "Size"

if particles interact only by "touching"
(e.g., classical, macroscopic billiard balls)
then $\sigma \leftrightarrow$ particle radii: $\sigma=\pi\left(r_{a}+r_{b}\right)^{2}$
but: if interact by force field
(e.g., gravity, EM, nuke, weak)
cross section σ unrelated to physical size!

For example: e^{-}has $r_{e}=0$ (as far as we know!)
but electrons scatter via Coulomb (and weak) interaction
"touch-free scattering"

Reaction Rate Per Volume

recall: collision rate per target b is $\Gamma_{\text {per } b}=n_{a} \sigma_{a b} v$ total collision rate per unit volume is

$$
\begin{equation*}
r=\frac{d n_{\text {coll }}}{d t}=\Gamma_{\text {per } b} n_{b}=\frac{1}{1+\delta_{a b}} n_{a} n_{b} \sigma v \tag{8}
\end{equation*}
$$

Kronecker $\delta_{a b}$: O unless particles $a \& b$ identical Note: symmetric w.r.t. the two particles

What if particles have more than one relative velocity?

CMB: Last Scattering?

CMB is a background: all other observed sources closer

- low-z Universe transparent to CMB photons
- CMB scattering ineffective for these z

But scattering rate $\Gamma(\mathrm{CMB}-\text { matter })_{\text {per } \gamma}=n_{\text {targ }} c \sigma$

- low- $z \mathrm{U}$. contains atomic matter $=$ scatterers: $n_{\text {targ }}>0$
- photons can and do interact with atoms/ions/electrons: $\sigma>0$
$\Rightarrow \Gamma(\mathrm{CMB}$ - matter) > 0: scattering must occur!

Q: How can we reconcile these?
Q: Physical meaning, criterion for interaction "effectiveness"?

Particle Interactions in a FLRW Universe: Freezeouts

photon decouple plasma \rightarrow CMB last scattering
when: expansion redshifting \& volume dilution stops interactions

$$
\begin{equation*}
\Gamma_{\text {scatter }} \lesssim H \tag{9}
\end{equation*}
$$

or mean free time "infinite" $\rightarrow \tau \gtrsim t_{H} \sim t$
or mean free path "infinite" $\rightarrow \ell>d_{\text {hor,phys }}$
Q : which of these is best to use?

* This criterion of very general cosmological importance including CMB but also all of Early Universe!
* Since 「 depends on particle energies $\rightarrow T$ and usually Γ increases (strongly) with T
$\Gamma \lesssim H$ sometimes known as condition for "freezeout"
$\stackrel{\rightharpoonup}{\sigma}$ * freezeouts a central aspect of much of cosmology CMB, big bang nuke, particle dark matter, $21 \mathrm{~cm}, \ldots$

CMB Epoch: Freezeout of Cosmic Photon Scattering

Our Mission determine CMB release epoch
to do this: need photon scattering in cosmic environments
U. mostly composed of diffuse (gaseous) matter

Q: what are possible states of this matter?
Q: what processes can scatter photons?
Q: which scatter the most, least efficiently?

Demo: flame in projector beam Q: brighter or darker?

Photon Scattering Agents

Photon scatter off of charged matter: atoms, ions, electrons mostly H (90\% by number, 75\% by mass) rest is mostly He, then traces of others
possible states:

- molecules: H_{2} essentially invisible Q : why?
- neutral atoms: "H I" - essentially invisible unless $E_{\gamma}=$ level difference, e.g., $E(\operatorname{Ly} \alpha)=E_{2}-E_{1}=10.2 \mathrm{eV}$ or $E_{\gamma}>13.6 \mathrm{eV}$ binding
- ionized gas/plasma: free e^{-}readily scatter photons e $\rightarrow e \gamma$ at low energy $E_{\gamma} \ll m_{e} c^{2}$, Thompson scattering
${ }_{\infty} \quad \sigma_{e \gamma}=\sigma_{T}=\mathrm{const}=\frac{8 \pi}{3}\left(\frac{e^{2}}{m_{e} c^{2}}\right)^{2}=0.665 \times 10^{-24} \mathrm{~cm}^{2}$
Q: p has same charge-why can we ignore $p-\gamma$ scattering?

CMB Epoch: Egregiously Naïve Treatment

Naïve attempt to compute photon "scattering freezeout"

- present baryon density $n_{B} \approx n_{e}$ total electron density Q : why? evolves as $n_{e}=n_{e, 0} a^{-3}$
- using this, evaluate scattering rate per photon

$$
\begin{equation*}
\Gamma_{\gamma}=n_{e} \sigma_{T} c \stackrel{\text { naive }}{=} n_{e, 0} \sigma_{T} c a^{-3} \sim 5 \times 10^{-21} \mathrm{~s}^{-1} a^{-3} \tag{10}
\end{equation*}
$$

- also know present expansion rate H_{0} evolves roughly as matter-dom: $H=H_{0} a^{-3 / 2}$, so

$$
\begin{equation*}
\frac{\Gamma_{\gamma}}{H} \stackrel{\text { naive }}{\sim} 2 \times 10^{-3} a^{-3 / 2}=2 \times 10^{-3}(1+z)^{3 / 2} \tag{11}
\end{equation*}
$$

Q: implications of $z=0$ value?

- this would imply $\Gamma_{\gamma}>H$ when $z \gtrsim 60$

Q: what is qualitatively promising about this?
but quantatively, this is wrong: $z_{\text {lastscatter }} \gg 60$
Q : where did we go wrong?

