Astro 596/496 PC Lecture 18 March 1, 2010

Announcements:

• PS3 due in class Friday

Last time: began cosmic microwave background Penzias & Wilson 1965 discovery *Q: antenna temperature? excess? Q: main physical result?*

CMB Discovery: Precursors and Missed Opportunities

CMB discovery limited not by technology but by failure of imagination: nobody bothered to look!

• CMB *predicted* years before! Gamow (1948!): primordial nuke demands thermal radiation; should persist today didn't calculate, but could have, $T_0 \sim 4$ K! his students, Alpher & Herman (1948): explicitly calculate

 $T_0(1948 \text{ theoretical estimate}) = 5 \text{ K}$ (1)

these results were ignored & forgotten(!!)

Ν

 CMB measured years before!
 McKellar (1941): www: online paper interstellar C-N molecule seen via line multiplets excited levels populated as expected if in thermal radiation bath with

$T_0(\text{CN excitation, 1941 observation}) = 2.5 \text{ K}$ (2)

throwaway line about this being the "temperature of space"! ...but the CMB connection not made until after P&W

CMB history lessons?

Q: take-home message(s) for practice of science?

The Isotropic CMB: Present Data

Spectrum

best data: FIRAS instrument on

Cosmic Background Explorer (COBE)

Fixsen et al (1996):

- www: $T_{antenna}$ plot consistent with purely thermal
- present all-sky temperature

$$T_0 = 2.725 \pm 0.004 \text{ K} \tag{3}$$

• limits on distortions:

if spectrum has "chemical potential" μ :

$$I_{\nu} = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT - \mu} - 1}$$
(4)

then $\mu < 9 \times 10^{-5}$

4

also can put limits on distortion by superposition of blackbody spectra with different ${\cal T}$

Polarization

zero on average, but nonzero rms *Q: why can't there be a uniform polarization?* in an isotropic universe: polarization quadrupole ...more on this later

The Physics of the Isotropic CMB

We want to understand:

- what physics leads to the CMB?
- what cosmic epoch(s) does the CMB probe?
- what are the implications of the spectrum exquisitely good Planckian form?

To start, note that the *present* universe

must be *transparent* to the CMB

Q: why is this?

- *Q*: what does this imply about epoch probed by CMB?
- *Q*: what technology needed to calculate transparency?

σ

The CMB as a Scattering Problem

recall: *any* observed photon has this life cycle:

- emission
- scattering (possibly none, possibly many times)
- absorption (i.e., detection)

thus: any detected = absorbed photon
points back to emission or most recent scattering event
e.g., daytime sky: Sun's emission disk vs off-source scattered blue light

the fact that the CMB is a *background* to low-z objects \rightarrow late-time U. is *transparent* to CMB

thus: the CMB probes exactly the epoch

✓ when the universe was last able to scatter photons
 i.e., the last time U. was *opaque* to its thermal photons

CMB as Cosmic "Baby Picture": Last Scattering Surface

```
CMB created by (and gives info about)
epoch of cosmic transition: opaque \rightarrow transparent
```

but transparent/opaque transition is controlled by photon scattering e.g., CMB released at epoch of "last scattering" z_{IS} → CMB sky map is a picture of the U. then: "surface of last scattering" www: conformal time diagram

For more detail, e.g., when is z_{ls} ? \rightarrow need scattering technology

Highlights from Scattering 101

Collisions: $a + b \rightarrow stuff$

Consider particle beam: "projectiles," number density n_a incident w/ velocity von targets of number density n_b

Due to interactions, targets and projectiles "see" each other as spheres of projected area $\sigma(v)$: the

cross section

Q

fundamental measure interaction strength/probability

 \star atomic, nuke & particle physics meets astrophysics via σ

in time δt , what is avg # collisions on one target? Q: what defines "interaction zone" around target? interaction zone: particles sweep out "scattering tube"

- \bullet projectiles see targets as "bulls-eyes" of size σ
 - ...and vice versa!

sets tube cross-sectional area

• tube length $\delta x = v \delta t$

10

interaction volume swept around target: $\delta V = \sigma \delta x = \sigma v \delta t$

collide: if a projectile is in the volume

Cross Section, Flux, and Collision Rate

in tube volume δV , # projectiles = $\mathcal{N}_{\text{proj}} = n_a \delta V$ so ave # collisions in δt :

$$\delta \mathcal{N}_{\text{coll}} = \mathcal{N}_{\text{proj}} = n_{\text{a}} \sigma v \, \delta t \tag{5}$$

so $\delta N_{\rm COII}/\delta t$ gives

avg collision rate *per target* b $\Gamma_{perb} = n_a \sigma v = \sigma j_a$

where $j_a = n_a v$ is incident **flux**

Q: Γ units? sensible scalings n_a, σ, v ? why no n_b ?

Q: average target collision time interval? Q: average projectile distance traveled in this time? estimate avg time between collisions on target b:

mean free time au

collision rate: $\Gamma = d\mathcal{N}_{coll}/dt$ so wait time until next collision set by $\delta N_{coll} = \Gamma_{perb}\tau = 1$:

$$\tau = \frac{1}{\Gamma_{\text{per}b}} = \frac{1}{n_a \sigma v} \tag{6}$$

in this time, projectile a moves distance: mean free path

$$\ell_{\rm mpf} = v\tau = \frac{1}{n_a\sigma} \tag{7}$$

no explicit v dep, but still $\ell(E) \propto 1/\sigma(E)$ Q: physically, why the scalings with n, σ ?

Q: what sets σ for billiard balls? Q: what set σ for $e^- + e^-$ scattering?

Cross Section vs Particle "Size"

if particles interact only by "touching" (e.g., classical, macroscopic billiard balls) then $\sigma \leftrightarrow$ particle radii: $\sigma = \pi (r_a + r_b)^2$

but: if interact by force field
 (e.g., gravity, EM, nuke, weak)
 cross section *σ* unrelated to physical size!

For example: e^- has $r_e = 0$ (as far as we know!) but electrons scatter via Coulomb (and weak) interaction "touch-free scattering"

13

Reaction Rate Per Volume

recall: collision rate *per target b* is $\Gamma_{per b} = n_a \sigma_{ab} v$ total collision rate *per unit volume* is

$$r = \frac{dn_{\text{coll}}}{dt} = \Gamma_{\text{per}b}n_b = \frac{1}{1 + \delta_{ab}}n_a n_b \sigma v$$

(8)

Kronecker δ_{ab} : 0 unless particles a & b identical Note: symmetric w.r.t. the two particles

What if particles have more than one relative velocity?

CMB: Last Scattering?

CMB is a background: all other observed sources closer

- \bullet low-z Universe transparent to CMB photons
- CMB scattering ineffective for these z

But scattering rate $\Gamma(CMB - matter)_{per\gamma} = n_{targ}c\sigma$

- low-z U. contains atomic matter = scatterers: $n_{targ} > 0$
- photons can and do interact with atoms/ions/electrons: $\sigma > 0$ $\Rightarrow \Gamma(CMB - matter) > 0$: *scattering must occur!*
- *Q:* How can we reconcile these?
- Q: Physical meaning, criterion for interaction "effectiveness"?

Particle Interactions in a FLRW Universe: Freezeouts

photon *decouple* plasma \rightarrow CMB last scattering when: expansion redshifting & volume dilution stops interactions

$$\Gamma_{\text{scatter}} \lesssim H$$

(9)

or mean free time "infinite" $\rightarrow \tau \gtrsim t_H \sim t$ or mean free path "infinite" $\rightarrow \ell > d_{hor,phys}$ Q: which of these is best to use?

★ This criterion of very general cosmological importance including CMB but also all of Early Universe!

\star Since Γ depends on particle energies $\rightarrow T$ and usually Γ *increases* (strongly) with T

 $\Gamma \lesssim H$ sometimes known as condition for "freezeout"

^o ★ freezeouts a central aspect of much of cosmology CMB, big bang nuke, particle dark matter, 21 cm, ...

CMB Epoch: Freezeout of Cosmic Photon Scattering

Our Mission determine CMB release epoch to do this: need photon scattering in cosmic environments

- U. mostly composed of diffuse (gaseous) matter
- *Q*: what are possible states of this matter?
- *Q*: what processes can scatter photons?
- *Q*: which scatter the most, least efficiently?

Demo: flame in projector beam Q: brighter or darker?

Photon Scattering Agents

Photon scatter off of charged matter: atoms, ions, electrons mostly H (90% by number, 75% by mass) rest is mostly He, then traces of others

possible states:

- molecules: H₂ essentially invisible Q: why?
- neutral atoms: "H I" essentially invisible unless $E_{\gamma} =$ level difference, e.g., $E(Ly\alpha) = E_2 - E_1 = 10.2 \text{ eV}$ or $E_{\gamma} > 13.6 \text{ eV}$ binding
- ionized gas/plasma: free e^- readily scatter photons $e\gamma \rightarrow e\gamma$ at low energy $E_{\gamma} \ll m_e c^2$, Thompson scattering

$$\sigma_{e\gamma} = \sigma_T = \text{const} = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2}\right)^2 = 0.665 \times 10^{-24} \text{ cm}^2$$

18

Q: *p* has same charge–why can we ignore $p - \gamma$ scattering?

CMB Epoch: Egregiously Naïve Treatment

Naïve attempt to compute photon "scattering freezeout"

- present baryon density $n_B \approx n_e$ total electron density Q: why? evolves as $n_e = n_{e,0} a^{-3}$
- using this, evaluate scattering rate per photon

$$\Gamma_{\gamma} = n_e \sigma_T c \stackrel{\text{naïve}}{=} n_{e,0} \sigma_T c \ a^{-3} \sim 5 \times 10^{-21} \text{ s}^{-1} \ a^{-3} \tag{10}$$

• also know present expansion rate H_0 evolves roughly as matter-dom: $H = H_0 a^{-3/2}$, so

$$\frac{\Gamma_{\gamma}}{H} \stackrel{\text{na\vec{ive}}}{\simeq} 2 \times 10^{-3} a^{-3/2} = 2 \times 10^{-3} (1+z)^{3/2} \tag{11}$$

Q: implications of z = 0 value?

19

• this would imply $\Gamma_{\gamma} > H$ when $z \gtrsim 60$ *Q: what is qualitatively promising about this?* but quantatively, this is *wrong*: $z_{\text{last scatter}} \gg 60$ *Q: where did we go wrong?*