Astro 596/496 PC Lecture 19 March 3, 2010

Announcements:

• PS3 due next time in class

Last time: CMB observed—isotropic component

- most of CMB signal isotropic: $I_0 \gg \Delta I$
- spectrum: thermal, single temperature $T_0 = 2.725 \pm 0.001$ K no departures from Planck down to $\sim 10^{-4}$ level
- CONTEXT www: diffuse photon backgrounds

CMB theory-a scattering problem

Q: implications of ability to see cosmic objects to z = 8?

- *Q*: where/when do CMB photons probe?
- *Q: physical significance of CMB sky image?*
- *Q*: when will an observer stop seeing the CMB?
- *Q*: what sets "effectiveness" of cosmic scattering processes?

Particle Interactions in a FLRW Universe: Freezeouts

photon *decouple* plasma \rightarrow CMB last scattering when: expansion redshifting & volume dilution stops interactions

$$\Gamma_{\text{scatter}} \lesssim H$$

(1)

or mean free time "infinite" $\rightarrow \tau \gtrsim t_H \sim t$ or mean free path "infinite" $\rightarrow \ell > d_{hor,phys}$ Q: which of these is best to use?

★ This criterion of very general cosmological importance including CMB but also all of Early Universe!

\star Since Γ depends on particle energies $\rightarrow T$ and usually Γ *increases* (strongly) with T

 $\Gamma \lesssim H$ sometimes known as condition for "freezeout"

★ freezeouts a central aspect of much of cosmology CMB, big bang nuke, particle dark matter, 21 cm, ...

CMB Epoch: Freezeout of Cosmic Photon Scattering

Our Mission determine CMB release epoch to do this: need photon scattering in cosmic environments

U. mostly composed of diffuse (gaseous) matter

Q: what are possible states of this matter?

Q: what processes can scatter photons?

Q: which scatter the most, least efficiently?

Demo: flame in projector beam

Q: brighter or darker?

Q: why do we get the result we do?

ω

Photon Scattering Agents

Photon scatter off of charged matter: atoms, ions, electrons mostly H (90% by number, 75% by mass) rest is mostly He, then traces of others

possible states:

4

- molecules: H₂ essentially invisible Q: why?
- neutral atoms: "H I" essentially invisible unless $E_{\gamma} =$ level difference, e.g., $E(Ly\alpha) = E_2 - E_1 = 10.2 \text{ eV}$ or $E_{\gamma} > 13.6 \text{ eV}$ binding
- ionized gas/plasma: free e^- readily scatter photons $e\gamma \rightarrow e\gamma$ at low energy $E_{\gamma} \ll m_e c^2$, Thompson scattering

$$\sigma_{e\gamma} = \sigma_T = \text{const} = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2}\right)^2 = 0.665 \times 10^{-24} \text{ cm}^2$$

Q: *p* has same charge–why can we ignore $p - \gamma$ scattering?

CMB Epoch: Egregiously Naïve Treatment

Naïve attempt to compute photon "scattering freezeout"

- present baryon density $n_B \approx n_e$ total electron density Q: why? evolves as $n_e = n_{e,0} a^{-3}$
- using this, evaluate scattering rate per photon

$$\Gamma_{\gamma} = n_e \sigma_T c \stackrel{\text{naïve}}{=} n_{e,0} \sigma_T c \ a^{-3} \sim 5 \times 10^{-21} \text{ s}^{-1} \ a^{-3}$$
(2)

• also know present expansion rate H_0 evolves roughly as matter-dom: $H = H_0 a^{-3/2}$, so

$$\frac{\Gamma_{\gamma}}{H} \stackrel{\text{na\vec{ive}}}{\simeq} 2 \times 10^{-3} a^{-3/2} = 2 \times 10^{-3} (1+z)^{3/2} \tag{3}$$

Q: implications of z = 0 value?

СЛ

• this would imply $\Gamma_{\gamma} > H$ when $z \gtrsim 60$ *Q: what is qualitatively promising about this?* but quantatively, this is *wrong*: $z_{\text{last scatter}} \gg 60$ *Q: where did we go wrong?*

The CMB and Recombination

In cosmic matter, photon scattering controlled
by availability of **free** electrons – bound *e* don't count!
▷ ionized U: *e*⁻ abundant, scattering rapid
▷ neutral U: H essentially transparent to thermal background

ionized \leftrightarrow opaque

neutral ↔ transparent

CMB originates in (re)combination

in transition $p + e {\rightarrow} {\rm H} + \gamma$ "the fog clears"

• plasma \rightarrow neutral H

σ

- \bullet photon last scattering \rightarrow free streaming
- \bullet drunken stagger \rightarrow sober sprint

Q: what (directly) determines when photons decouple *from plasma? Q: how is recombination different from decoupling? related?*

Recombination and Decoupling

decoupling set by *freezeout* of scattering as seen by photons \rightarrow when $\Gamma_{\text{scatter,per}\gamma} \lesssim H$ U. transition: opaque \rightarrow transparent sets *"cosmic photosphere"* at which CMB released

(re)combination is when $p + e \rightarrow H + \gamma$ U. transition: ionized \rightarrow neutral

these are *logically and physical distinct* epochs but close in time and physically *related*: photon scattering dominated by *free* e^- : *Thompson scattering* and free e^- abundance drops enormously at recombination \rightarrow recombination leads to decoupling

Q: pre-decoupling, what should photon spectrum be? Q: how are photon, plasma temperatures related?

Cosmic Thompson Scattering

Pre-decoupled photons in thermal equilib with plasma \rightarrow initially I_{ν} is Planck spectrum, $T_{\gamma} = T_e$ Thompson scattering continues until free e gone

Fun facts about Thompson scattering $e\gamma \rightarrow e\gamma$

- ▷ interaction strength *energy-independent*: σ_{T} a constant
- an *elastic* process: photon energy *unchanged*
- a "two-to-two" reaction: photon number conserved
- > scattering *anisotropic* relative to initial photon direction angular distribution (scattering per solid angle $d\Omega$)

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} \left(\frac{e^2}{m_e c^2} \right)^2 \left(1 + \cos^2 \theta \right) \tag{4}$$

includes a *quadrupole* component \rightarrow creates polarization!

 \odot

Assume that recomb is a freezeout *only* of Thompson: *Q: implications for post-recomb (i.e., observed) CMB spectrum?*

CMB Spectrum: The Magic of Thompson Scattering

Thompsom implications for cosmic last scattering:

- σ_{T} energy-indep \rightarrow simultaneous freezeout at all freq ν
- elastic scattering \rightarrow no change in spectral shape only changes photon directions
- \bullet photon number cons \rightarrow don't add or subtract to spectrum
- anisotropic scattering w.r.t. initial photon direction but *if* initial directions isotropic \rightarrow no net anisotropy created

magic of Thompson scattering:

- \star simultaneous freezeout of all photons (all ν)
- ★ photon spectrum preserved

Q

Q: implications of observed Planckian CMB spectrum?

The CMB Demands a Hot Big Bang

observe *thermal* (Planck) CMB spectrum today

- \Rightarrow *thermal* CMB spectrum *pre*-decoupling!
- \Rightarrow in early U: photons thermalized, coupled to matter!

Conclude:

Cosmic matter & radiation once in "good thermal contact"

- \rightarrow but this requires much higher T , ρ than seen today
- → CMB demands Universe went through *hot*, *dense* early phase
- \Rightarrow CMB \rightarrow hot big bang

Q: real-Universe complications?

10

in the real Universe, non-Thompson processes operate

most notably: as recombination begins, *neutral H* present resonant emission and absorption due to H lines *does* lead to *non-thermal distortions* in CMB

but turns out distortions are at high frequency i.e., nonthermal perturbations expected to be significant only at $h\nu \gtrsim 40kT$ why this scale? we will see...

Last Scattering: Including Recombination

Recombination Revisited

For simplicity, we will assume baryons are only protons www: laboratory hydrogen plasma and will consider only Thompson scattering (excellent approx!)

Then: scattering rate per photon is

$$\Gamma_{\gamma} = n_{e, \text{free}} \sigma_{\mathsf{T}} c \propto n_{e, \text{free}} \tag{5}$$

and last scattering when $\Gamma_{\gamma} \simeq H$

last scattering/decoupling controlled by free electron density $n_{e,{\rm free}}$ changes due to

- cosmic volume expansion $\propto a^{-3}$
 - recombination: free e^- lost to neutral H

rewrite to account for each $n_{e,\text{free}}$ effect separately:

$$n_{e,\text{free}} = X_e n_{e,\text{tot}} = X_e n_{\text{baryon}} \tag{6}$$

- baryon density $n_{\rm b} \propto a^{-3} \propto T^3$ gives volume dilution
- "ionization fraction"

$$X_e \equiv \frac{n_{e,\text{free}}}{n_{e,\text{free}} + n_{e,\text{bound}}} = \frac{n_p}{n_p + n_{\text{H}}} = \frac{n_p}{n_{\text{b}}}$$
(7)

unchanged by volume dilution

only depends on recombination thermodynamics:

i.e.,
$$X_e = X_e(T) = X_e(z)$$

in homogeneous U

Q: what changes photon number density after recombination?

- *Q*: what changes spectrum after recombination?
- $\tilde{\omega}$ Q: naïve estimate of recombination $T_{\text{rec}}, z_{\text{rec}}$?
 - *Q*: zeroth-order treatment of $X_e(T)$?