Astro 596/496 PC Lecture 20 March 5, 2010

Announcements:

- PS3 due
- PF 4 out, due next Friday noon

Last time: theory of isotropic CMB spectrum key aspect: Thompson scattering is *only* process acting

for most photons (i.e., for all photons with $h\nu \lesssim 40kT$) Given a photon spectrum I_{ν} prior to decoupling

Q: what is spectrum after Thompson freezeout? Observed (post-decoupling) CMB spectrum: *thermal Q: implications?*

Q: what physically controls onset of decoupling?

- *Q:* naïve estimate of recombination T_{rec} , z_{rec} ?
- Q: zeroth-order treatment of free electron fraction $X_e(T)$?

Recombination: Improved Naïve View

Given H binding energy

$$B_{\rm H} = E(p) + E(e) - E({\rm H}) = 13.6 \ {\rm eV}$$

simple estimate of recomb epoch goes like this:

Binding sets energy scale, so

- \star when particle energies above $B_{\rm H}$: U ionized,
- ★ otherwise: U neutral
- \rightarrow naïvely expect transition at $T_{\rm rec,naive} = B_h \sim 150,000$ K

But we know $T = T_0/a$, so estimate recomb at

$$a_{\text{rec,naive}} = \frac{T_0}{T_{\text{rec,naive}}} \sim 2 \times 10^{-5} \\ z_{\text{rec,naive}} = \frac{T_{\text{rec,naive}}}{T_0} - 1 \sim 50,000 \end{cases} \text{wrong!}$$

Ν

Q: guesses as to what's wrong?

Q: how to do this right?

Statistical Mechanics and Cosmology

For much of cosmic time contents of U. in *thermal equilibrium*

statistical mechanics: at fixed $T \rightarrow$ matter & radiation n, ρ, P then cosmic T(a) evolution $\rightarrow n, \rho, P$ at any epcoh

Boltzmann: consider a particle (elementary or composite) with a series of energy states: for two sets of states with energies E_1 and $E_2 > E_1$ and degeneracies (# states at each E) g_1 and g_2 ratio of number of particles in these states is

$$\frac{n(E_2)}{n(E_1)} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/T} \tag{1}$$

where I put k = 1, i.e., $kT \rightarrow T$

ω

Example: atomic hydrogen, at TQ: ratio of ground (1S) to 1st excited state (2P) populations? Atomic hydrogen (H I):

• energy levels:
$$E_n = -B_{\rm H}/n^2$$
 for $n \ge 1$

• angular momenta degeneracies: $g_{\ell} = 2\ell + 1$

1S:
$$n = 1 \rightarrow E(1S) = -B; \ \ell = 0 \rightarrow g(1S) = 1$$

2P:
$$n = 2 \rightarrow E(2P) = -B/4; \ \ell = 1 \rightarrow g(2P) = 3$$

$$\frac{n(2P)}{n(1S)} = 3e^{-3B/4T} = 3e^{-120,000\,\text{K}/T} \tag{2}$$

Q: sanity checks—is this physically reasonable?

Q: how does this ratio change if plasma is partially ionized i.e., contains both H I and H II= $H^+ = p$?

Note: H is bound system \rightarrow discrete energies we now broaden analysis to include unbound systems \rightarrow continuous energies, momenta

Statistical Mechanics in a Nutshell

```
classically, phase space (\vec{x}, \vec{p})
```

completely describes particle state but quantum mechanics \rightarrow uncertainty $\Delta x \Delta p \geq \hbar/2$ semi-classically: min phase space "volume" $(dx \ dp_x)(dy \ dp_y)(dz \ dp_z) = h^3 = (2\pi\hbar)^3$ per quantum state of fixed \vec{p}

define "occupation number" or "distribution function" $f(\vec{x}, \vec{p})$: number of particles in each phase space "cell" *Q: f range for fermions? bosons?*

$$dN = gf(\vec{x}, \vec{p}) \ \frac{d^3 \vec{x} \ d^3 \vec{p}}{(2\pi\hbar)^3}$$
(3)

σ

where g is # internal (spin/helicity) states: Q: $g(e^-)$? $g(\gamma)$? g(p)? Fermions: $0 \le f \le 1$ (Pauli) Bosons: $f \ge 0$ $g(e^-) = 2s(e^-) + 1 = 2$ electron, same for p $g(\gamma) = 2$ (polarizations) photon

Particle phase space occupation f determines bulk properties

Number density

$$n(\vec{x}) = \frac{d^3 N}{d^3 x} = \frac{g}{(2\pi\hbar)^3} \int d^3 \vec{p} \ f(\vec{p}, \vec{x})$$
(4)

Mass-energy density

$$\varepsilon(\vec{x}) = \rho(\vec{x})c^2 = \langle En \rangle = \frac{g}{(2\pi\hbar)^3} \int d^3\vec{p} \ E(p) \ f(\vec{p}, \vec{x})$$
(5)

Pressure

σ

$$P(\vec{x}) = \langle p_i v_i n \rangle_{\text{direction}i} = \frac{\langle pvn \rangle}{3} = \frac{g}{(2\pi\hbar)^3} \int d^3 \vec{p} \, \frac{p\,v(p)}{3} \, f(\vec{p}, \vec{x})$$
(6)

Q: these expressions are general–simplifications in FLRW?

FRLW universe:

- \bullet homogeneous \rightarrow no \vec{x} dep
- isotropic \rightarrow only \vec{p} magnitude important $\rightarrow f(\vec{p}) = f(p)$

in thermal equilibrium:

Boson occupation number

$$f_{\rm b}(p) = \frac{1}{e^{(E-\mu)/kT} - 1}$$
(7)

Fermion occupation number

$$f_{\rm f}(p) = \frac{1}{e^{(E-\mu)/kT} + 1}$$
(8)

Note: μ is "chemical potential" or "Fermi energy" $\mu = \mu(T)$ but is *independent* of *E*

If $E, \mu \ll T$: both $\rightarrow f = e^{-(E-\mu)/kT}$ $\rightarrow Boltzmann distribution$

Chemical Potential & Number Conservation

For a particle species in thermal equilibrium

$$f(p; T, \mu) = \frac{1}{e^{(E-\mu)/kT} \pm 1}$$
(9)

What is μ , and what does it mean physically?

First, what if $\mu = 0$ then f, n, P depend only on T \rightarrow everything at same T has same ρ, P ! sometimes true! Q: examples? but not always!

but *n* often conserved

 \rightarrow fixed by initial conditions, not T

 \rightarrow if particle number conserved, μ determined

^{$$\infty$$} by solving $n_{\text{cons}} = n(\mu, T) \rightarrow \mu(n_{\text{cons}}, T)$

so: $\mu \neq 0 \Leftrightarrow$ particle number conservation

if "chemical" equilibrium:

- rxns change particle numbers among species
- equilibrium: forward rate = reverse rate

```
a + b + \dots \leftrightarrow A + B + \dots
then
```

$$\sum_{\text{initial particles}i} \mu_i = \sum_{\text{final particles}f} \mu_f$$
(10)

sum of chemical potentials "conserved"

Equilibrium Thermodynamics

Gas of mass m particles at temp T: n, ρ , and P in general complicated because of $E(p) = \sqrt{p^2 + m^2}$ but simplify in ultra-rel and non-rel limits

Non-Relativistic Species

10

 $E(p) \simeq m + p^2/2m$, $T \ll m$ for $\mu \ll T$: Maxwell-Boltzmann, same for Boson, Fermions

for non-relativistic particles = matter energy density, number density vs T? Q: recall $n(a), \rho(a)$ and T(a)? Non-Rel Species

number density

$$n = \frac{g}{(2\pi\hbar)^3} e^{-(mc^2 - \mu)/kT} \int d^3p \ e^{-p^2/2mkT}$$
(11)

$$= g e^{-(mc^2 - \mu)/kT} \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2}$$
(12)

energy density:

$$\rho c^2 = \langle En \rangle = \varepsilon_{\text{rest mass}} + \varepsilon_{\text{kinetic}}$$
 (13)

$$= mc^2 n + \frac{3}{2} kT n$$
 (14)

$$\simeq \varepsilon_{\text{rest mass}} = mc^2 n$$
 (15)

pressure

$$P = \frac{\langle pvn \rangle}{3} = \frac{\langle p^2 n/m \rangle}{3} = \frac{2}{3} \varepsilon_{\text{kinetic}}$$
(16)
= $nkT \ll \rho c^2$ (17)

11

recover the ideal gas law!

The Ratio of Baryons to Photons

The number of barons per photon is the "baryon-to-photon ratio" $\eta \equiv n_B/n_\gamma$

photons not conserved in general: e.g., Brehmsstrahlung $e \rightarrow e + \gamma$ so chem pot $\mu_e = \mu_e + \mu_\gamma \rightarrow \mu_\gamma = 0$ $\rightarrow n_\gamma \sim T^3$: fixed by T alone

baryons conserved: #baryons = const in comoving vol $d(n_B a^3) = 0 \rightarrow n_B \propto a^{-3}$ \rightarrow so $\mu_B(T) \neq 0$ enforces this scaling

Thus we have

$$\eta = \frac{n_{B,0}a^{-3}}{n_{\gamma,0}(T/T_0)^3} = \left(\frac{T_0}{a\,T}\right)^3 \eta_0 \tag{18}$$

12

baryon number conservation: $n_{\rm B} \propto a^{-3}$ thermal photons: $n_{\gamma} \propto T^3$

so as long as $T \sim 1/a$ then $\eta = const!$ baryon-to-photon ratio conserved! thus we expect $\eta_{\text{BBN}} = \eta_{\text{CMB}} = \eta_0!$

numerically (from BBN, CMB anisot):

$$\eta_0 \sim 6 \times 10^{-10} \ll 1$$
 (19)

huge number of photons per baryon! never forget!

but $\rho_B/\rho_\gamma \sim m_B n_B/T n_\gamma \sim \eta m_B/T \neq const$

13

Director's Cut Extras

Kinetic Theory of Pressure due to Particle Motions

consider cubic box, sidelength L (doesn't really need to be cubic) contain "gas" of N particles: can be massive or massless particles collide with walls, bounce back elastically particles exert force on wall \leftrightarrow wall on particles this lead to bulk *pressure*

focus on one particle, and its component of motion in one (arbitrary) axis x: speed v_x , momentum p_x

- *elastic* collision: $p_{x,init} = -p_{x,fin} \rightarrow \delta p_x = 2p_x$
- collision time interval for same wall: $\delta t_x = v_x/2L$
- single-particle *momentum transfer* (force) per wall: $F_x = \delta p_x / \delta t_x = p_x v_x / L$
- single-particle force per wall area: $P = F_x/L^2 = p_x v_x/L^3 = p_x v_x/V$

15

Q: total pressure?

total pressure is sum over all particles:

$$P = \sum_{\text{particles } \ell=1}^{N} \frac{p_x^{(\ell)} v_x^{(\ell)}}{V}$$
(20)

can rewrite in terms of an average momentum flux

$$P = \frac{N}{V} \frac{\sum_{\ell=1}^{N} p_x^{(\ell)} v_x^{(\ell)}}{N} = \langle p_x v_x \rangle n$$
(21)

where n = N/V is *number* density $\langle p_x \rangle n$ would be average *momentum density* along xand $\langle p_x v_x \rangle n$ is average *momentum flux* along x

if particle gas has isotropic momenta, then

$$\langle p_x v_x \rangle = \langle p_y v_y \rangle = \langle p_z v_x \rangle = \frac{1}{3} \langle \vec{p} \cdot \vec{v} \rangle = \frac{1}{3} \langle pv \rangle$$
 (22)

16

so $P = \frac{1}{3} \langle pv \rangle n$

Ultra-Relativistic Species

$$E(p) \simeq cp \gg mc^2$$
 (i.e., $kT \gg mc^2$):
Also take $\mu = 0$ ($\mu \ll kT$)

energy density, number density?
Q: recall the answers?

for relativistic bosons number density

$$n_{\text{rel,b}} = \frac{g}{(2\pi\hbar)^3} \int d^3p \, \frac{1}{e^{cp/kT} - 1} \\ = \frac{4\pi g}{(2\pi\hbar)^3} \int dp \, p^2 \, \frac{1}{e^{cp/kT} - 1} = \frac{g}{2\pi^2} \, \left(\frac{kT}{\hbar c}\right)^3 \, \int_0^\infty du \, u^2 \, \frac{1}{e^u - 1} \\ = g \frac{\zeta(3)}{\pi^2} \, \left(\frac{kT}{\hbar c}\right)^3 \propto T^3$$

where

$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots = 1.20206\dots$$
 (23)

18

relativistic fermions:

$$n_{\rm rel,f} = \frac{3}{4} n_{\rm rel,b} \tag{24}$$

so $n \propto T^3$ for both e.g., CMB today: $n_{\gamma,0} = 411 \ {\rm cm}^{-3}$

energy density: relativistic bosons

$$\rho_{\text{rel,b}}c^{2} = \frac{g}{(2\pi\hbar)^{3}} \int d^{3}p \ cp \ \frac{1}{e^{cp/kT} - 1}$$
$$= \frac{g}{2\pi^{2}} \ \frac{(kT)^{4}}{(\hbar c)^{3}} \int_{0}^{\infty} du \ u^{3} \ \frac{1}{e^{u} - 1}$$
$$= g \frac{\pi^{2}}{30} \ \frac{(kT)^{4}}{(\hbar c)^{3}}$$

and for fermions

19

$$\rho_{\rm rel,f} = \frac{7}{8} \rho_{\rm rel,b} \tag{25}$$

so
$$ho \propto T^4$$
 for both

pressure

$$P_{\rm rel} = \left\langle \frac{pv}{3} n \right\rangle = \frac{1}{3} \rho_{\rm rel} c^2 \tag{26}$$

since v = c $P \propto T^4$

Temperature Evolution

If in therm eq, maintain photon occ. #

$$f(p) = \frac{1}{e^{p/T} - 1}$$
 (27)

but $cp = h\nu = hc/\lambda \propto 1/a(t)$: $\Rightarrow p = p_0/a$

w/o interactions, const
$$\# \gamma$$
 per mode p
 $\Rightarrow f(p) = const$
 $\Rightarrow p(t)/T(t) = p_0/T_0$
 $\Rightarrow T/T_0 = p/p_0 = 1/a = 1 + z$
e.g., at $z = 3$, CMB $T = 4T_0 \simeq 11$ K
(measured in QSO absorption line system!

recall: used w = 1/3 to show $\rho_{\gamma} \propto a^{-4}$ but blackbody $\rho_{\gamma} \propto T^{4}$ together $T \propto 1/a$ (OK!)