Astro 596/496 PC Lecture 22 March 10, 2010

Announcements:

• PF4 due noon Friday

Last time: at last-cosmic recombination $\star T_{rec} \simeq B_{H}/40 \ll B_{H} Q$: why? \star after recomb: $X_{e} \neq 0$: some free e, p remain Q: why?

Today: spurred by successes at $z_{\rm rec} \sim 1500, \ t \sim 350,000 \ {\rm yr}$ push to $t \sim 1 \ {\rm sec}$

 \vdash

Primordial Nucleosynthesis

Prelude to Nucleosynthesis

Q: what sets *T* scale for element (nuclei) synthesis?

Q: what component dominates cosmic density, expansion then?

Q: what is the particle content of the universe then?

Q: what form(s) do the baryons take then? mesons?

Nucleosynthesis: Setting the Stage

 \star light elements formed in nuclear reactions relevant scale: nuclear binding energies \sim MeV

★ $T \sim \text{MeV}$ at redshift $z_{\text{bbn}} = T/T_0 - 1 \sim 10^{10}!$ since $z_{\text{bbn}} \gg z_{\text{eq}}$ (matter-rad equality) well into radiation dominated era: $\rho \approx \rho_{\text{rad}}$ www: Ω vs *a* plot will see: $t(1 \text{ MeV}) \sim 1$ sec

4

```
★ particle content at BBN
relativistic species: photons, neutrinos, e^{\pm} when T \gtrsim m_e
non-relativistic species: baryons, e^- when T \ll m_e
what about dark matter? energy?
```

DM presumably non-rel, weakly interacting: inert during BBN DE: also assume not important for dynamics, microphyiscs ...but can later relax these assumptions and test them!

Who Feels What? Particles and Forces

quarks: feel all fundamental forces (strong, EM, weak, gravity) carry conserved quantum number: **baryon number**

leptons: do not feel strong force

but also carry conserved quantum number: lepton number

- charged leptons: feel EM, weak, gravity
- neutrinos: only feel weak, gravity

С

More bragging rights:

in BBN, all four fundamental forces play a crucial role!

Neutrinos: Essential Ingredient yet Barely There

antineutrinos: $\bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau$ since electric charge $Q(\nu) = 0$, possible that ν is own antiparticle Q: is it?

masses: known that m_{ν} are nonzero (oscillations observed) mass values not known (but for sure $\leq few \times 10 \text{ eV} \ll m_e$)

Q: implications for BBN?

for quarks and charged leptons, masses increase with each family

 \rightarrow same for ν s??

weak interaction: qualitative characteristics

(1) "signature" is transformation of quark, lepton flavor

e.g., $n \rightarrow p + e^- + \bar{\nu}_e$ decay

really a quark change $d(ud) \rightarrow u(ud) + e^- + \bar{\nu}_e$

(2) for $E \lesssim 100$ GeV (= M_W, M_Z), rxn strength is weak (duh!) e.g., $\nu_e e \rightarrow \nu_e e$ scattering ~ 1 MeV: $\sigma_{\nu_e e} \sim 10^{-44}$ cm² ~ $10^{-20} \sigma_T$

σ

Nucleosynthesis: Particle Content Revisited

relativistic species: $\gamma, \nu_i \overline{\nu}_i \ (i \in e \mu \tau), e^{\pm} \ (\text{for } T \gtrsim m_e)$

1

non-relativistic species: baryons in BBN: when $T \gtrsim \text{MeV}$: p, n only when $T \leq m_e \rightarrow e$ non-rel too

* neutrinos in BBN Q: what sets $n_{\nu}, \rho_{\nu}, T_{\nu}$? how do they evolve? Q: assumptions needed?

BBN Initial Conditions: Ingredients of Primordial Soup

Begin above nuke binding: T > 1 MeV

 ∞

EM reactions fast: typical rate $\Gamma_{\text{EM}} \sim n_{\gamma} \sigma_{\text{T}} c \gg H$ \Rightarrow baryon, photon, e^{\pm} pair plasma in thermal equilib: $T_B = T_e = T_{\gamma} \equiv T$

weak int fast too (for now)! $\Gamma_{\text{weak}} \sim n_{\nu}\sigma_{\text{weak}}c \gg H$ all ν species coupled to each other, and plasma $\rightarrow T_{\nu} = T_{\gamma}$

What sets densities n_{ν}, ρ_{ν} ? not only T_{ν} , but also dreaded chem potential μ_{ν} physics issue: is there a net neutrino excess: $n_{\nu} \neq n_{\overline{\nu}}$?

c.f. net baryon excess \rightarrow exists: $n_B \neq n_{\bar{B}}$, but small: $n_B/n_\gamma \ll 1$ if net lepton number $n_L \sim n_B$, turns out $\mu_{\nu}/T \sim \eta$ negligible we will assume $\mu_{\nu} \ll T \Leftrightarrow$ no large lepton/baryon excess if otherwise, changes story!

BBN Initial Conditions: Radiation Domination

Neutrino densities: for sure $m_{\nu} \ll T$ assume $\mu_{\nu} \ll T \rightarrow$ absolute $n_{\nu}, \rho_{\nu}, P_{\nu}$ set by $T_{\nu} \rightarrow$ each ν species *i* has $n_{\nu_i} = n_{\overline{\nu}_i}$ and

$$n_{\nu\bar{\nu},i} \propto T^3 = \frac{3}{4} n_{\gamma} \quad \rho_{\nu\bar{\nu},i} \propto T^4 = \frac{7}{8} \rho_{\gamma} \tag{2}$$

total relativistic energy density:

$$\rho_{\rm rel} = \rho_{\gamma} + \rho_{e^{\pm}} + N_{\nu}\rho_{1\nu\bar{\nu}} \equiv g_* \frac{\pi^2}{30} T^4 \tag{3}$$

where g_* counts "effective # of relativistic degrees of freedom" at $T \gtrsim 1$ MeV, $g_* = 43/4 = 10.75$, and Friedmann:

$$\frac{t}{1 \text{ sec}} \approx \left(\frac{1 \text{ MeV}}{T}\right)^2 \tag{4}$$

Q: simple way to see $t \sim 1/T^2$ scaling is right?

now focus on baryons Q: what sets n_B ? n/p?

BBN Initial Conditions: The Baryons

Cosmic baryon density n_B , and thus $\eta = n_B/n_\gamma$ not changed by reactions with $T \lesssim E_{\text{Fermilab}} \sim 1 \text{ TeV} = 10^6 \text{ MeV}$ i.e., baryon non-conservation not observed to date $harpon_B$ set somehow in early universe ("cosmic baryogenesis") harpon't a priori know n_B , treat as free parameter (η)

neutron-to-proton ratio n/p can and does change at ~ 1 MeV weak int fast: $n \leftrightarrow p$ interconversion

$$n + \nu_e \leftrightarrow p + e^-$$
 (5)

$$p + \bar{\nu}_e \leftrightarrow n + e^+$$
 (6)

also recall $m_n - m_p = 1.29$ MeV: close in mass but not same!

Q: implications for n/p?

10

n/p ratio "thermal"

think of as 2-state system: the "nucleon,"

- nucleon "ground state" is the proton: $E_1 = m_p c^2$
- nucleon "excited state" is the *neutron*: $E_2 = m_n c^2$

when in equilibrium, Boltzmann sez:

$$\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p} e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T}$$
(7)

with $\Delta m = m_n - m_p = 1.293318 \pm 0.000009$ MeV

at
$$T \gg \Delta m$$
: $n/p \simeq 1$
at $T \ll \Delta m$: $n/p \simeq 0$

11

Equilibrium maintained until weak interactions freeze out i.e., competition between weak physics, gravity physics *Q: how will weak freezeout scale compare to nuclear binding energy scale* ~ 1 *MeV*?

Weak Freezeout Temperature

Weak interactions freeze when $H = \Gamma_{\text{weak}}$, i.e.,

$$\sqrt{G_{\rm N}}T^2 \sim \sigma_0 m_e^{-2}T^5$$
 (8)
 $\Rightarrow T_{\rm Weak\ freeze} \sim \frac{(G_{\rm N})^{1/6}}{(\sigma_0/m_e^2)^{1/3}} \sim 1 \,{\rm MeV}$ (9)

gravity & weak interactions conspire to give $T_{f} \sim m_{e} \sim B_{nuke}!$

for experts: note that $G_{\rm N} = 1/M_{\rm Planck}^2$, so

$$\frac{T^2}{M_{\text{Pl}}} \sim \alpha_{\text{weak}} \frac{T^5}{M_W^2}$$
(10)
$$\Rightarrow T_{\text{freeze}} \sim \left(\frac{M_W}{M_{\text{Pl}}}\right)^{1/3} M_W \sim 1 \text{ MeV}$$
(11)

freeze at nuclear scale, but by accident!

12

Q: what happens to n, p then? what else is going on?

Directors' Cut Extras

Elementary Particles for the Minimalist Antimatter

fundamental result of Relativistic QM every particle has an antiparticle e.g., $e^{-} = e^{+}$ positron e.g., $\bar{p} =$ antiproton; Fermilab: $p\bar{p}$ collisions

note: mass
$$m(\bar{x}) = m(x)$$

decay lifetime $\tau(\bar{x}) = \tau(x)$
spin $S(\bar{x}) = S(x)$
electric charge $Q(\bar{x}) = -Q(x)$

sometimes particle = own antiparticle (must have charge 0) e.g., $\bar{\gamma} = \gamma$, but note: $\bar{n} \neq n$

Cosmic Antimatter: rule of thumb x, \bar{x} abundant when thermally produced: $T > m_x$

Baryons

n and *p* not fundamental particles made of 3 pointlike particles: "quarks" two types ("flavors") in *n*, *p*: *u* "up," *d* "down" p = uud, $n = udd \rightarrow$ quark electric charge $Q_u = +2/3$, $Q_d = -1/3$ spin S(u) = 1/2 = S(d)

baryon \equiv made of 3 quarks

baryon conservation:

assign "baryon number" A(q) = +1/3, $A(\bar{q}) = -1/3$ $\rightarrow A(n) = A(p) = +1$

in all known interactions: baryon number conserved:

 $\sum A_{\text{init}} = \sum A_{\text{fin}}$

 $J_{\overline{u}} \rightarrow$ guarantees stability of the proton *Q*: why? but free *n* unstable, decay to *p Q*: why not *n* decay in nuclei?

Periodic Table of Elementary Particles

known fundamental particles (& antipartners): 3 families

 $\begin{pmatrix} u \\ d \\ e \\ \nu_e \end{pmatrix} \begin{pmatrix} c \\ s \\ \mu \\ \nu_\mu \end{pmatrix} \text{ charm quark strange quark mu lepton (muon)} \begin{pmatrix} t \\ b \\ \tau \\ \nu_\tau \end{pmatrix} \text{ top quark bottom quark tau lepton (12)}$

all of these are spin-1/2: matter made of fermions!

Family Resemblances

1st family: quarks, charged lepton (e) comprise ordinary matter 2nd, 3rd family particles

- same electric charges, same spins, (mostly) same interactions as corresponding 1st family cousins
- but 2nd, 3rd family quarks, charged leptons more massive and & unstable \rightarrow decay into 1st family cousins

lifetimes very short, e.g., longest is $\tau(\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu) = 2 \times 10^{-6}$ s *Q: implications for BBN epoch?*

Weak $n \leftrightarrow p$ Rates

example: want rate Γ_n per n of $\nu + n \rightarrow e^- + p$ as func. of T

Generally,

$$\Gamma_n = n_\nu \langle \sigma v \rangle \sim T^3 \langle \sigma \rangle \tag{13}$$

since $v_{\nu} \simeq c$

can show: cross section $\sigma \sim \sigma_0 (E_e/m_e)^2$ where $\sigma_0 \sim 10^{-44}$ cm² very small! so thermal avg: $\langle \sigma \rangle \sim \sigma_0 (T/m_e)^2$

for experts:
$$\sigma \sim G_F^2 T^2 \sim \alpha_{\rm weak} T^2 / M_W^4$$

so $\Gamma_{\rm weak} \sim \alpha_{\rm weak} T^5 / M_W^4$