Astro 596/496 PC Lecture 23 March 12, 2010

Announcements:

- PF4 was due at noon
- PS4 out, due next Friday in class

Last time: began big bang nuke & particle cosmology

Big Bang Nucleosynthesis (BBN) expectations:

- BBN-CMB analogy: *unbound components* → *bound states*
- BBN epoch set by $T_{\rm BBN} \sim B_{\rm nuke} \sim 1 \, {\rm MeV}$ when $t(1{\rm MeV}) \sim 1 \, {\rm sec}$
- н
- BBN occurs deep into radiation-dominated Universe

Element Synthesis

first step in building complex nuclei: $n + p \rightarrow d + \gamma$ but $d + \gamma \rightarrow n + p$ until $T \ll B(d)$; see Extras

when photodissocation ineffective, $n + p \rightarrow d + \gamma$ fast rapidly consumes all free n and builds dwhich can be further processed to mass-3:

$$d+p \rightarrow {}^{3}{\rm He} + \gamma \ d+d \rightarrow {}^{3}{\rm H} + p \ d+d \rightarrow {}^{3}{\rm He} + n \eqno(1)$$
 and to ${}^{4}{\rm He}$

$$^{3}\text{H} + d \rightarrow ^{4}\text{He} + n \quad ^{3}\text{He} + d \rightarrow ^{4}\text{He} + p$$
 (2)

some of which can then make mass-7:

$${}^{3}\text{H} + {}^{4}\text{He} \rightarrow {}^{7}\text{Li} + \gamma \quad {}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma \tag{3}$$

Ν

Q: what limits how long these reactions can occur? *Q*: which determines which products are most abundant?

BBN Reaction Flows

Binding Energy

nuclei are bound quantum structures, confined by nuclear forces among the "nucleons" n, p can quantify degree of stability—i.e., resistance to destruction via binding energy: for nucleus with Z protons, N neutrons, A = N + Z nucleons

 B_A = energy of individual parts – energy of bound whole = $(Zm_p + Nm_n - m_A)c^2$ > 0 if bound

 $_{\omega}$ note: generally B_A increases with A but that's not the whole story on stability

```
binding shared among all A nucleons,
so binding per nucleon is B_A/A
```

```
nuclear stability \leftrightarrow high B_A/A
```

```
www: plot of B_A/A vs A
lowest binding/nucleon: d!
highest: <sup>56</sup>Fe, but among light elements, <sup>4</sup>He highest by far
Q: implications for BBN
```

Reaction flows: tightest binding favored \rightarrow essentially all pathways flow to ⁴He www: nuke network almost all $n \rightarrow ^{4}$ He: $n(^{4}$ He)_{after} = 1/2 $n(n)_{before}$ $Y_{p} = \frac{\rho(^{4}$ He)}{\rho_{B}} \simeq 2(X_{n})_{before} \simeq 0.24 (4) $\Rightarrow \sim 1/4$ of baryons into ⁴He, 3/4 $p \rightarrow$ H result weakly (log) dependent on η Robust prediction: large universal ⁴He abundance But $n \rightarrow {}^{4}$ He incomplete: as nuke rxns freeze, leave traces of:

- D
- ³He (and ³H \rightarrow ³He)
- ⁷Li (and ⁷Be \rightarrow ⁷Li)

```
abundances \leftrightarrow nuke freeze T
trace species D, <sup>3</sup>He, <sup>7</sup>Li: strong n_B \propto \eta dependence
```

BBN theory predictions summarized in "Schramm Plot" Lite Elt Abundances vs η

www: Schramm plot

 $_{o}$ Note: no A > 7...so no C,O,Fe... Q: why not?

Why no elements A > 7?

1. Coulomb barrier

2. nuclear physics: "mass gaps" no stable nuclei have masses A = 5,8 \rightarrow with just $p \& {}^{4}$ He, can't overcome via 2-body rxs need 3-body rxns (e.g., $3\alpha \rightarrow {}^{12}$ C) to jump gaps but ρ , T too low

Stars *do* jump this gap, but only because have higher density a long time compared to BBN

Testing BBN: Warmup

BBN Predictions: Lite Elements vs η

To test: measure abundances

00

Where and when do BBN abundances (Schramm plot) apply?

Look around the room–not 76% H, 24% He. Is this a problem? Why not?

Solar system has metals not predicted by BBN Is this a problem? Why not?

So how test BBN? What is the key issue?

When does first non-BBN processing start?

Testing BBN: Lite Elements Observed

Prediction:

BBN Theory \rightarrow lite elements at $t\sim 3$ min, $z\sim 10^9$

Problem:

observe lite elements in astrophysical settings typically $t\gtrsim 1\,$ Gyr, $z\lesssim few$ stellar processing alters abundances

Q: If measure abundances in a real astrophysical system, can you unambiguously tell that stars have polluted?

Q: How can we minimize (and measure) pollution level?

ဖ

stars not only alter light elements
 but also make heavy element = "metals"
 stellar cycling: metals ↔ time

Solution: \rightarrow measure lite elts and metals low metallicity \rightarrow more primitive in limit of metals \rightarrow 0: primordial abundances!

look for regions with low metallicity \rightarrow less processing

Deuterium

Two methods: (1) use D/H_{\odot} , model D - Z evolution: model dependent X (old school) (2) measure D/H at high z YES "quasar absorption line systems"

QSO: for our purposes

high-z continuum source (lightbulb)

www: QSO spectrum

consider cloud, mostly H

• at $z < z_{qso}$, but still high z

e.g., $z_{qso} = 3.4, z_{cloud} = 3$

- H absorbs γ if energy tuned to levels lowest: $n = 1 \rightarrow 2$, Ly α
- but Ly α in QSO frame redshifted in cloud frame

What happens?

What about a cloud at yet lower z?

intervening material seen via absorption H: "Lyman- α forest"

Deuterium in High-*z* **Absorption Systems**

D energy levels \neq H: for Hydrogen-like atoms

$$E_n = -\frac{1}{n^2} \frac{1}{2} \alpha^2 \mu c^2$$
 (5)

where $\mu = \text{reduced mass} = m_e m_A / (m_e + m_A) \simeq m_e (1 - m_e / A m_p)$ $\Rightarrow \Delta E = E_{n,D} - E_{n,H} \approx +1/2 \ m_e / m_p \ E_{n,H}$ $\Rightarrow \Delta z_D = \Delta \lambda / \lambda = -1/2 \ m_e / m_p$ $c \Delta z_D = -82 \text{ km/s (blueward)} \rightarrow \text{look for "thumbprint"}$ www: O'Meara D spectrum

What about stellar processing?

- ★ stars *destroy* D *before* H-burning! (pre-MS)
- * nonstellar astrophysical (Galactic) sources negligible Epstein, Lattimer & Schramm 1977; updated in Prodanović & BDF 03)
- \Rightarrow BBN is only important D nucleosynthesis source $\rightarrow D(t)$ only decreases
- ä chem evol models: versus Z metallicity: $D \sim e^{-Z/Z_{\odot}}D_p$ Quasar absorbers: $Z \sim 10^{-2}Z_{\odot} \rightarrow \text{expect } D_{\text{QSOALS}} \approx D_p$

Deuterium Results

For the 5 best systems (clean D, well-determined H)

$$\left(\frac{\mathsf{D}}{\mathsf{H}}\right)_{\mathsf{QSOALS}} = \left(\frac{\mathsf{D}}{\mathsf{H}}\right)_p = (2.78 \pm 0.29) \times 10^{-5} \tag{6}$$

For the top 2 (multiple transitions)

$$\left(\frac{\mathsf{D}}{\mathsf{H}}\right)_{\mathsf{QSOALS}} = \left(\frac{\mathsf{D}}{\mathsf{H}}\right)_p = (2.49 \pm 0.18) \times 10^{-5} \tag{7}$$

significant scatter in high-z D/H:

unknown systematics?

Sloan Survey \rightarrow many QSO's \rightarrow tighter D/H

¹/₄ very promising cosmological probe!

Assessing BBN: Theory vs Observations

(Standard) BBN theory has a free parameter: $n_B/n_\gamma = \eta$ different lite element predictions for different η *Q: so how to compare with observations? is it even possible to test the theory?*

What uncertainties are there in the standard theory?

What uncertainties are there in the obs?

How can we account for these uncertainties when comparing theory and observations?

If theory & obs agree, what would this mean: dualitatively? quantitatively? If they disagree, what would this mean?

Assessing BBN: Theory vs Observations

BBN Theory:

all elements dependent on η

the only free parameter in standard ("vanilla") calculation

- \Rightarrow for each η value, 4 lite elements: "overconstrained"
- a priori η is unknown, but homogeneous U \rightarrow one value today

www: Schramm plot

Lite Elt Observations:

- 1. measure *one* element: find η
- 2. measure *more* elements: each picks an η
 - \Rightarrow do they agree? test of BBN & of cosmology!

16

Assessing BBN: Procedure

lite elts fit if η in range

17

$$3.4 \times 10^{-10} \le \eta \le 6.9 \times 10^{-10} \tag{8}$$

Have extrapolated hot big bang to $t \sim 1$ s predict lite elts \rightarrow agrees w/ theory big bang model works back to $t \sim 1$ s, $z \sim 10^{10}$!

lends confidence to extrapolation t < 1 s

Directors' Cut Extras

The Short but Interesting Life of a Neutron

(1) at
$$T > T_f$$
, $t \sim 1$ s
 $n \leftrightarrow p$ rapid
maintain $n/p = e^{-\Delta m/T}$

(2) at
$$T = T_f$$
,
fix $n/p = e^{-\Delta m/T_f} \simeq 1/6$
so *n* "mass fraction" is

$$X_n = \frac{p_n}{\rho_B} = \frac{m_n n}{m_n n + m_p p} \approx \frac{n}{n+p} \approx 1/7$$
(9)

(3) until nuclei form, free *n* decay: $\dot{n} = -n/\tau_n$, with $\tau_n = 885.7 \pm 0.8$ s then mass fraction drops as

$$X_n = X_{n,i} e^{-\Delta t/\tau} \tag{10}$$

Q: why take this simple from?

19

Nuclear Astrophysics: Overcoming the Coulomb Barrier

to go from n, p to ⁴He requires at least one nuclear reactions between charged nuclei so must contend with Coulomb repulsion

$$V_C(r) = \frac{Z_1 Z_2 e^2}{r} \sim 1 \ Z_1 Z_2 \ \text{MeV} \ \left(\frac{1 \ \text{fm}}{r}\right)$$
 (11)

but nuclear force, while strong, is short-ranged: $r_{\rm nuke} \sim 1$ fm \rightarrow particles apparently need $mv^2/2 \sim |V_C| \sim 1$ MeV to fuse but $mv^2/2 \sim T \ll 1$ MeV, and higher energies exponentially suppressed

Q: how can we overcome this barrier?

20

Quantum Mechanics to the Rescue

Quantum mechanics \rightarrow tunneling Penetration probability

$$P \propto e^{-2\pi Z_1 Z_2 e^2/\hbar v} = e^{-bE^{-1/2}}$$
(12)

so $P \neq 0$ even when $E \ll |V_C|$ \rightarrow tunnel under barrier, then react note: not as serious an issue in BBN as it is in most stars e.g., the sun