Astro 596/496 PC Lecture 25 March 17, 2010

Announcements:

• PS4 due Friday in class

Last time: testing big bang nuke

- theory: light elements after ~ 3 min each is a function of $\eta \equiv n_{\text{baryon}}/n_{\gamma}$
- observations: abundances extrapolated to zero metallicity each picks it's own η
- overconstrained system—one parameter, several abundances: elements *should* agree for some η but need not – nontrivial test of cosmology!
- www: results rough agreement—but what about ⁷Li?
 approaches: (1) don't worry too much, look at implications
 (1) worry, look at implications

Subcritical Baryons and Two Kinds of Dark Matter $0.024 \le \Omega_B \le 0.049$

baryons do not close the universe!

 $\Omega_B \ll \Omega_{Matter} \simeq 0.3$

most of cosmic matter is not made of baryons!

"non-baryonic dark matter"

huge implications for particle physics-more on this to come

Measure known baryons which are directly observable optically

i.e., in *luminous* form (stars, gas): $\rho_{\text{lum}} = (M/L)_{\star} \mathcal{L}_{\text{vis}}$ $\Omega_{\text{lum}} \simeq 0.0024 h^{-1} \sim 0.004 \ll \Omega_{\text{B}}$

^N ⇒ most *baryons* dark! "baryonic dark matter" Q: Where are they?

Where are the dark baryons?

• compact objects (white dwarfs, neutron stars, black holes) search for *MACHOs*: MAssive COmpact Halo Objects via gravitational microlensing www: lensing diagram, MACHO event see lensing events towards LMC! but are they MACHOs or LMC stars? ...probably the latter

• warm/hot intergalactic medium (WHIM) structure formation \rightarrow infall \rightarrow shock heat to $T \sim 10^5 - 10^7$ K note: in galaxy clusters, most baryons in hot "intracluster" gas, not galaxies! www: X-ray cluster but X-rays from WHIM gas harder to see... recent evidence of diffuse "X-ray forest" (PF5) www: Chandra spectra

ω

BBN and the CMB: Battle of the Baryons

Until recently:

4

BBN was the premier means for measuring $\eta \propto \Omega_B$

 \rightarrow the best cosmic ''baryometer''

Now: CMB independently measures η

battle of the baryons

compare independent measures of η test of cosmology!

If agreement: big bang working very well! $z \sim 10^{10}$ theory & light elements quantitatively consistent with $z \sim 10^3$ theory & CMB

If disagreement: a pressing problem!

BBN in Light of the CMB

WMAP (Spergel et al 2003, 2006; Komatsu et al 2008!): $\Omega_{baryon,CMB} = 0.0462 \pm 0.0015$ $\Rightarrow \eta_{CMB} = (6.21 \pm 0.16) \times 10^{-10}$ • 2.6% precision! • independent of BBN!

BBN vs CMB: Testing Cosmology

pillar vs pillar!

www: Schramm plot: η_{BBN} vs η_{CMB}

Concordance!

in more detail:

- 1. use η_{CMB} as input to (Std) BBN theory,
- 2. compute light elements
- 3. compare with observations
- www: abundance likelihoods (CFO)
- D agreement perfect! ⁴He agreement excellent
- ⁷Li tension clearer hot research topic
 "lithium problem" could point to new physics!

What's up with ⁷Li?

- observational systematics (e.g., stellar parameters)? Quite possible. (Melendez & Ramirez 2004; FOV05)
- astrophysical systematics (e.g., depletion)? but what about 6 Li? and Li dispersion small (\lesssim 0.2 dex)...
- BBN calculation systematics: nuke reaction rates? But wellmeasured, and can use solar neutrinos to test dominant source: ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ (CFO04)
- new physics? if so, nature kind-didn't notice till now otherwise, would not have believed hot big bang...

Particle Dark Matter

BBN and Particle Dark Matter

BBN motivates dark matter theory & searches two ways: Quantitative. $\Omega_B \ll \Omega_m$: must have non-baryonic dark matter ...and lots of it! Qualitative. BBN success at $t \sim 1$ s \rightarrow early U as physics lab

"The universe is the poor man's particle accelerator"

- Ya. Zel'dovich

Big implications for-and motivations from-particle physics

- *Q*: what can we say about DM properties generally?
- *Q:* what can we say if DM is in particle form? lifetime, mass, interactions, quantum #s?
- Q: what known particles are candidates for non-baryonic DM? Q: does particle theory offer dark matter candidates?

Elementary Particle Physics and Dark Matter

Dark matter dark: no/feeble EM, strong interactions matter: behaves as nonrelativistic material $\rightarrow \rho \propto a^{-3}$, $P \ll \rho c^2$ naturally leads to hypothesis of DM as Weakly Interacting Massive Particles: WIMPs

If DM is swarms of WIMPs, what are their properties?

lifetime: must exist today $t_0 \sim 14$ Gyr \rightarrow stable or very long-lived

mass: don't know!

only know mass dens $\rho_{m,0}$ today on cosmic, galactic scales

⁵ but without also knowing # dens $n_{m,0}$, can't get $m = \rho/n$ \rightarrow in fact, with specific model, from m get n_0 interactions/quantum #s: BBN: dark matter not baryonic Standard Model of particle physics *does* provide a candidate for non-baryonic DM stable + massive: neutrinos; can show (PS5):

$$\Omega_{\nu}h^2 = \frac{\sum_{\text{species}} m_{\nu}}{92 \text{ eV}} \tag{1}$$

...but can show (oscillation data, large scale structure, WMAP) $\sum_{\text{species}} m_{\nu} \lesssim 1 \text{ eV}: \Omega_{\nu} \sim 0.01 < \Omega_B \ll \Omega_m$ ν s are non-baryonic DM, but negligible contribution to density

no other viable Standard Model particle candidates non-baryonic DM demands physics beyond the Standard Model particle candidates available "off the shelf" lightest supersymmetric particle, axion, strangelets...

Q: how are WIMPs produced in early U?

11