Astro 596/496 PC Lecture 27 March 29, 2010

Announcements:

• PF5 due Friday at noon

Up till now: worked up in z, back in tstudied homogeneous universe = cosmology to zeroth order

= unperturbed / background spacetime

Today: begin inflation

 \star highest z, earliest t we will visit

 \star transition from homogeneous \rightarrow inhomogeneous Universe

 \star afterward, we will go forward in t

study how inflationary (?) density perturbations are written onto CMB and grow to structures today

Ц

Cosmological Inflation

The Standard Cosmology: Successes and Discontents

"Standard Cosmology" – FLRW

- General Relativity with
- cosmological principle, and
- perfect fluid, endowed with
- Iaboratory physics: atomic, nuclear, particle

How's it going?

- Q: what are qualitative, quantitative successes?
- *Q*: what questions, loose ends, untested assumptions remain?

Cosmology Scorecard: Triumphs

Standard Cosmology successfully accounts for observed

★ Hubble expansion

also cosmic time dilation

★ dark night sky (Olber's paradox)

Q: why is this is a problem? how does FLRW resolve it?

★ existence of a highly isotropic CMB with a thermal spectrum also its temperature redshifting

also its temperature redshifting

- ★ primordial light element abundances
 - 4 He to $\sim 10\%$
 - D to $\sim 30\%$

⁷Li to \sim factor 2-3

A good list! Enough to inspire some confidence ...but pressing questions remain

Cosmic Loose Ends

Unexplained observations & unanswered puzzles

- ? what is the dark matter? why is $\rho_{\rm m}/\rho_{\rm B}\sim$ 7 today?
- ? what is the dark energy? why is $\rho_{\Lambda}/\rho_{\rm m} \sim 2$ today?
- ? why is $\Omega_0 \approx 1$? "flatness problem"
- ? why is the CMB so isotropic

especially for angular scales $> \theta_{horizon, recomb} \sim 1^{\circ}$ "horizon problem"

? why is the U so homogeneous on large scales?

"smoothness problem"

? what is the origin of *in*homogeneities on small scales? "lumpiness problem"

Note:

СЛ

- important questions but not *inconsistencies* per se
- suggests Standard Cosmology incomplete but not wrong points to new physics

From Outer Space to Inner Space: Other Triumphs and Questions

Elementary particle physics also has Standard Model

- * Incorporates (via quantum electrodynamics) non-rel QM inherits successes of atomic physics (\sim eV scales)
- \star Incorporates (via quantum chromodynamics) nuke physics inherits successes at \sim MeV scales
- * all lab experiments understandable in terms of
 3 families of quarks & leptons

σ

4 fundamental interactions (strong, weak, E&M, gravity)

★ E&M and weak forces can be *unified*: "electroweak" understood as low-energy asymmetric manifestation of one high-energy symmetric interaction i.e., at $E \gtrsim 100$ GeV, EM & weak have same coupling, strength cost: invent new scalar field/spin-0 particle: Higgs without Higgs: massive photon, massless electron! with Higgs: unification, precision: agree w/ expts to < 1%!

Beyond the Standard Model of Particle Physics

Spectacular successes raise questions:

- does the Higgs exist? is it a fundamental particle or composite?
- why 3 families?
- why particles masses, interactions?
- why is matter fermionic, force carriers bosonic?
- are other unifications possible?
- ⇒ Standard Model not wrong but incomplete!

Note similarity to Standard Cosmology: more than coincidence? solutions might indeed be related

e.g., new interactions, particles \rightarrow dark matter candidates

7

Particle Standard Model points beyond itself motivates theories to explain observed patterns

- Supersymmetry (SUSY): boson-fermion symmetry
- unite strong + electroweak: "grand unification theory" (GUT)

 \star interaction strengths change with energy

 \star same at $E_{\rm GUT} \sim 10^{15}~{
m GeV}$

00

• unite gravity too: quantum gravity/string theory scale: Compton wavelength (QM) ~ Schwarzchild radius (GR) when $E \sim M_{\text{Planck}} = \sqrt{\hbar c/G} \sim 10^{19} \text{ GeV}$ $r \sim 10^{-33} \text{ cm}, t \sim 10^{-43} \text{ s: Planck scale}$

All have major cosmological consequences

- e.g., SUSY: essentially *demands* WIMPs! a problem if not discovered soon!
- but also, present cosmo puzzles more severe in Early Universe: worth quantifiying more precisely since maybe Early U also offers solution

Standard Cosmology: Quantitative Questions

Flatness Problem

Now: $\Omega_0 \sim 1$, i.e., $|\Omega_0 - 1| = 0.0023^{+0.0054}_{-0.0056} \ll 1$ (WMAP 2010!) but Friedmann says

$$|\mathbf{\Omega} - \mathbf{1}| \equiv |\mathbf{\Omega}_{\kappa}| = \frac{c^2}{R^2} \left(\frac{1}{aH}\right)^2 = \frac{c^2}{R^2} \left(\frac{1}{\dot{a}}\right)^2 \tag{1}$$

expect $|\Omega - 1|$ smaller in rad-dom, matter-dom past *Q*: why? at $z_{\text{rec}} \sim 1000$, $\Omega = 1 \pm 10^{-5}$ at $z_{\text{BBN}} \sim 10^{10}$, $\Omega = 1 \pm 10^{-18}$ \Rightarrow what made the Universe this flat?

Horizon Problem

CMB almost at particle horizon regions $\theta_{\rm hor,rec} \gtrsim 1^{\circ}$ outside particle horzion at recomb so CMB sky surveys $\Omega_{\rm sky}/\Omega_{\rm hor,rec} \sim 4\pi/\pi \theta_{\rm hor,rec}^2 \sim 10^5$ causally disconnected regions

 \Rightarrow how did they become coordinated to $\Delta T/T \sim 10^{-5}$ level?

Unwanted Relics

10

Particle theories beyond the standard model bring trouble as well as benefits \rightarrow often predict relic particles we *don't* want

canonical example: grand unification (GUTs) good news: naturally violate baryon number source of matter/antimatter asymmetry? bad news: naturally predict magnetic monopoles unobserved, strongly constrained (lead to topological defects) \Rightarrow no more than $\lesssim 1$ per horizon today

If GUTs correct, monopole production seems unavoidable \Rightarrow how did the U. get rid of monopoles?

Beyond Standard Cosmology: Inflation Part I: Abstract Inflation

The basic idea:

If the early U. experienced a extended phase of

accelerated expansion, huge ($\sim e^{60}$) increase in scale factor a

...several cosmological birds killed with one stone

Q: which problems, how fixed?

Inflation: the Magic of Acceleration

Flatness Problem

qualitatively: inflate away the curvature

quantitatively:

- ★ curvature scale $R(t) = a(t) R_0$ hugely enlarged Friedmann curvature term $\kappa/R(t)^2 \rightarrow 0$
- **★** departure from flatness $|\Omega 1| \equiv |\Omega_{\kappa}| \sim 1/R^2 \dot{a}^2$ changes as $d/dt |\Omega_{\kappa}| \propto \ddot{a}$
 - \Rightarrow acceleration drives $\Omega \rightarrow 1!$

but note: then lumpiness problem worse! (for now)

12

Horizon Problem

qualitatively: small causal (sub-horizon) region
expanded to exponentially large scales
CMB really samples one causal region!

★ at time t, max physical distance any particle can travel in next Hubble time $\delta t = t_H = 1/H(t)$ is

$$\delta \ell_{\text{phys}}(t) \le c \delta t = \frac{c}{H} = d_{\text{H}}(t)$$
 (2)

i.e., the Hubble length at t, and max comoving distance is

$$\delta \ell_{\rm com} = \frac{\delta \ell_{\rm phys}}{a} = \frac{c}{aH} = d_{\rm H,com}$$
 (3)

comoving Hubble length at t

★ compare with: comoving particle horizon

$$d_{\text{hor,com}} = \int_0^t \frac{dt'}{a(t')} = \int_0^{a(t)} \frac{da}{a^2 H} = \int_0^{a(t)} \frac{da}{a} d_{\text{H,com}}$$
(4)

13

Q: what is physical distinction between $d_{hor,com}$ and $d_{H,com}$?

The difference: *now* versus *ever*!

- comoving Hubble length d_{H,com} is max comov dist a particle can travel in next Hubble time
 ⇒ size of U presently (i.e., at t) in causal contact
- comoving particle horizon $d_{hor,com}$ is max comov dist a particle can ever have traveled

 \Rightarrow size of U *ever* in causal contact

Can be comparable, but do not have to be!

Note different time evolution:

- $\triangleright \dot{d}_{hor,com} = c/a \ge 0$ never decreases Q: why?
- ▷ but $\dot{d}_{H,com} = d(aH)^{-1}/dt = -\ddot{a}/\dot{a}^2 < 0$ in accelerating U!
 - \Rightarrow acceleration shrinks causal region!

14