Astro 596/496 PC Lecture 29 April 2, 2010

Announcements:

- PF5 was due at noon
- PS5 out, due in class Monday April 12

PF5:

 \vdash

- *Q:* horizon solution without inflation?
- *Q: inflation/dark energy compare/contrast?*
- Q: what does it mean for the U to expand faster than light?

Last time: Inflation

- scalar field dynamics in an expanding universe slow roll conditions constrain inflaton potential
- *Q: what's rolling? why must roll be slow? what is required to make it slow?*

Ingredients of an Inflationary Scenario

Recipe:

- 1. inflaton field ϕ must exist in early U.
- 2. must have $ho_{\phi} pprox V$ so that $w_{\phi}
 ightarrow -1$ so that $a \sim e^{Ht}$
- 3. continue to exponentiate $a \sim e^N a_{\text{init}}$ for at least $N = \int H dt \gtrsim 60$ *e*-folds
- 4. stop exponentiating eventually ("graceful exit")
- 5. convert field ρ_{ϕ} back to radiation, matter ("reheating")
- 6. then ϕ must "keep a low profile," $\rho_{\phi} \ll \rho_{\text{tot}}$
- 7 (bonus) what about acceleration and dark energy today?

Q: what can we say about how inflation fits

N in the sequence of cosmic events, e.g. monopole production, baryon genesis, BBN, CMB?

Cosmic Choreography: The Inflationary Tango

Inflation must occur such that it

solves various cosmological problems, then

allows for the universe of today, which must

- contain the known particles, e.g., a net baryon number
- pass thru a radiation-dominated phase (BBN) and a matter-dominated phase (CMB, structure formation)
- \Rightarrow this forces an ordering of events

Cosmic Choreography: Required *time-ordering*

- 1. monopole production (if any)
- 2. inflation
- 3. baryogenesis (origin of $\eta \neq 0$)
- **4.** radiation \rightarrow matter \rightarrow dark energy eras

ω

Electroweak woes: hard to arrange baryogenesis afterwards!

Models for Inflation

Inflation model: specifies $V(\phi)$

[+ initial conditions, reheat prescription]

Polynomial Potentials

- e.g., Klein-Gordon $V=m^2\phi^2/2$, quartic $V=\lambda\phi^4$
- simplest models giving inflation
- require $\ensuremath{\textit{Planck-scale}}$ initial conditions for ϕ
- but to achieve sufficient inflation (enough *e*-foldings *N*) and perturbations at observed (CMB) scale demands *tiny coupling* $\lambda \sim 10^{-13}$ (!)

 \rightarrow potential energy scale $V \ll m_{pl}^4$ but why is coupling so small?

Illustrates characteristics of (successful) inflation models:

 \triangleright large initial $\phi\gtrsim m_{\rm pl}$ value

4

▷ small coupling in $V \rightarrow$ scale $V^{1/4} \sim 10^{15-16}$ GeV (GUT?)

Exponential Potentials: Power-Law Inflation if

$$V = V_0 \exp\left(-\sqrt{\frac{2}{p}}\frac{\phi}{m_{\rm pl}}\right) \tag{1}$$

then can solve equations of motion exactly: $a \sim t^p$; if p > 1, U. accelerates, but not exponentially

Designer Potentials

can customize V to give desired a(t), e.g., $a \sim \exp(At^f), \; 0 < f < 1$ if

$$V(\phi) \sim \left(\frac{\phi}{m_{\text{pl}}}\right)^{-\beta} \left[1 - \frac{\beta^2}{6} \left(\frac{m_{\text{pl}}^2}{\phi^2}\right)\right]$$
(2)

С

How about the Higgs?

from electroweak unification, we "know" of one scalar \rightarrow Higgs field H^0 , $M_H \gtrsim 100$ GeV? same symbol as Hubble, right kind of field \rightarrow is it ϕ ? i.e., what about inflation at the electroweak scale? not a bad idea-possibly correct!-but nontrivial at best problem not with inflation, but its place in the cosmic dance

Inflation, Inhomogeneities, and Quantum Mechanics

Thus far: classical treatment of inflaton field (except for inflaton decays during reheating)

- $\bullet~\phi$ described by classical equations of motion
- \bullet taken to hold for arbitrarily small ϕ

In this picture:

when exit inflation, universe essentially

▷ perfectly flat, and

perfectly smooth—i.e., density spatially uniform regardless of initial conditions (as long as they allowed inflation)

Q: why?

 $\overline{}$

Classical Inflation and Smoothness

expect initial spatial inhomogeneities in $\phi(\vec{x})$ but evolves classically as

$$\ddot{\phi} - \nabla^2 \phi + 3H\dot{\phi} - V' = 0 \tag{3}$$

where

$$\nabla^2 = \sum \frac{\partial^2}{\partial x_{\text{phys}}^2} = \frac{1}{a^2} \sum \frac{\partial^2}{\partial x_{\text{com}}^2}$$
(4)

inhomogeneities $\delta\phi(\vec{x})$ measured by nonzero gradients but since $\nabla^2 \propto 1/a^2 \rightarrow 0$ exponentially, classically: $\delta\phi(\vec{x}) \rightarrow 0$ \Rightarrow after inflation ϕ and $\rho = V(\phi)$ exponentially smooth in space

 ∞

good news: solved flatness, smoothness problems
bad news: we have done too much! too smooth!
can't form structures if density perfectly uniform

Quantum Mechanics to the Rescue

but quantum mechanics exists and is mandatory classical ϕ field \rightarrow quantized as inflatons think \vec{E},\vec{B} vs photons

inflaton field must contain quantum fluctuations before, during inflation

What we want: statistical properties of fluctuations

- typical magnitude of fluctuations $\delta\phi$
- how $\delta\phi$ depends on lengthscales
- corresponding fluctuations in ho_{ϕ}
- correlations at different length scales