Astro 596/496 PC Lecture 30 April 5, 2010

Announcements:

- PF5 was due at noon
- PS5 out, due in class next Monday

Last time: inflation and cosmic lumpiness classical inflaton field removes all spatial perturbations \rightarrow has zero point modes, inflaton excitations

Today:

 \vdash

quantum fluctuations in inflaton field

inevitably lead to density perturbations

if this really happened:

we are descendant of quantum fluctuations!

Quantum Mechanics to the Rescue

but quantum mechanics exists and is mandatory classical ϕ field \rightarrow quantized as inflatons think \vec{E},\vec{B} vs photons

inflaton field must contain quantum fluctuations before, during inflation

What we want: statistical properties of fluctuations

- typical magnitude of fluctuations $\delta\phi$
- how $\delta\phi$ depends on lengthscales
- \bullet corresponding fluctuations in ρ_ϕ
- correlations at different length scales

Fluctuation Amplitude: Rough Estimate

quantum fluctuation \rightarrow turn to uncertainty principle

$$\delta E \,\,\delta t \sim \hbar \sim 1$$
 (1)

recall: energy density is

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V$$
 (2)

if perturbation from classical: $\phi(t, \vec{x}) = \phi_{cl}(t) + \delta \phi(t, \vec{x})$, then for small $\delta \phi$,

$$\delta\rho \sim (\nabla\delta\phi)^2 + V'(\phi_{\mathsf{CI}})\delta\phi \approx (\nabla\delta\phi)^2 \tag{3}$$

since slow roll $\rightarrow V'$ small (flat potential)

 $\[Gamma] \[Gamma] \$

 H^{-1} is only lengthscale in problem so $\nabla \delta \phi \sim \delta \phi / H^{-1} \Rightarrow \delta \rho \sim H^2 (\delta \phi)^2$ so in Hubble volume $V_H = d_H^3 = H^{-3}$, energy fluctuation is

$$\delta E = \delta \rho \ V_H = \frac{(\delta \phi)^2}{H} \tag{4}$$

characteristic timescale is $\delta t \sim 1/H$, so

$$\delta E \ \delta t \sim \frac{(\delta \phi)^2}{H^2} \sim 1$$
 (5)

and typical (root-mean-square) inflaton fluctuation is

$$\delta\phi \sim H \tag{6}$$

had to be! *H* is the only other dimensionally correct scale in the problem!

Note: $H \sim const$ during inflation all fluctuations created with \sim same amplitude

What Just Happened?

To summarize:

СЛ

- *classically*, inflaton field ϕ_{cl} quickly inflates away any of its initial perturbations
- but *quantum fluctuations* $\delta \phi$ unavoidable created and persist throughout inflation
- in any region, amplitude $\delta \phi(\vec{x})$ random but *typical* value $\delta \phi \sim H$

Q: what do the presence of inflaton fluctucations mean for inflationary dynamics in different regions?

Q: what consequences/signatures of fluctuations might remain after inflation?

Fluctuation Evolution and the Cosmic Horizon

in presence of fluctuations $\delta\phi$ and $\delta\rho_{\phi}$ can view inflationary universe as ensemble of "sub-universes" evolving independently—same slow roll, but with different ϕ , ρ_{ϕ} at a fixed tclassical discussion \rightarrow ensemble average now want behavior typical deviation from mean

particle horizon $\sim H^{-1}$ critical

- already saw: sets scale for fluctuation
- also "shuts off" fluctuation evolution

consider perturbation of lengthscale λ

- \bullet leaves horizon when $H\sim 1/\lambda$
- σ
- \bullet then can't evolve further: keeps same $\delta \rho / \langle \rho \rangle$
- until after inflation, when re-enters horizon

Bottom line: at any given scale λ relevant perturbation is the one born during inflation when $\lambda \sim 1/H$

dimensionless perturbation amplitude: fraction of mean density in horizon $\delta_H \equiv \delta \rho / \langle \rho \rangle$

on scale λ , amplitude fixed at horizon exit $\delta \phi \sim H$ (in fact, $H/2\pi$)

 \rightarrow perturbed universe starts inflating at higher ϕ

or undergoes inflation for different duration $\delta t \simeq \delta \phi / \dot{\phi}$ this gives an additional expansion

$$\delta \ln a = \frac{\delta a}{a} = H \delta t = \frac{H^2}{2\pi \dot{\phi}} \tag{7}$$

7

but inflation exit is set at fixed $\phi_{\rm end}$ and $V_{\rm end}\sim\rho_{\rm end}$

perturbed energy density at end of inflation set by different expansion at inflation exit:

$$\delta_{\mathsf{H}} \equiv \frac{\delta\rho}{\langle\rho\rangle} \tag{8}$$

$$\sim \frac{\delta(a^{3}V_{\mathsf{end}})}{\langle a^{3}V_{\mathsf{end}}\rangle} \sim \frac{\delta a}{a} = \frac{H^{2}}{2\pi\dot{\phi}} \tag{9}$$

evaluated at any scale λ at horizon crossing

i.e., when $\lambda \sim 1/H$

⇒ density perturbations created at all lengthscales!

```
    ∞ but gives right answer
    in particular, fluctuation indep of lengthscale
```

What Just Happened? ... Part Deux

the *classical* behavior of a slow-rolling ϕ lead to homogeneity, isotropy regardless of initial conditions \Rightarrow fixes horizon, flatness, monopole problem

the *quantum* fluctuations in ϕ lead to density perturbations on all lengthscales including scales $\gg d_{hor}$ today these perturbations form the "seeds" for cosmic structures!

quantum mechanics & uncertainty principle essential for the existence of cosmic structure

[°] "The Universe is the ultimate free lunch."

- Alan Guth

Evolution of Quantum Perturbations

Write spatial fluctuations in inflaton field as sum (integral) of Fourier modes:

$$\delta\phi(t,\vec{x}) = \sum_{\vec{k}} \delta\phi_{\vec{k}}(t) e^{i\vec{k}\cdot\vec{x}_{\text{com}}}$$
(10)

where $k = k_{\rm com} = 2\pi/\lambda_{\rm com}$ is comoving wavenumber

classical part of $\delta\phi_{\vec{k}}$ inflated away but quantum part crucial

in Director's Cut notes:

- inflaton field begins in vacuum state
- evolves as a quantum harmonic oscillator

 \rightarrow dominated by vacuum=ground state

10

Inflation Spectrum Slightly Tilted Scale Invariance

recall: perturbation leaving horizon have very similar amplitude during inflation \rightarrow nearly same for all lengthscales $\leftrightarrow k$ perturbation rms amplitude

$$\delta_{\inf}^2(k) \propto k^{-6\epsilon + 2\eta} \tag{11}$$

- * successful inflation \Leftrightarrow slow roll $\Leftrightarrow \epsilon, \eta \ll 1$ demands **perturbation spectrum nearly independent of scale** nearly "self-similar," without characteristic scale *"Peebles-Harrison-Zel'dovich"* spectrum
- ★ successful inflation must end $\rightarrow \epsilon, \eta \neq 0$ demands small departures from scale-invariance "tilted spectrum"

Inflation Spectrum Statistical Properties

- ★ Recall: inflaton quantum modes ↔ harmonic oscillator dominated by vacuum ↔ ground state $\|\psi_{sho}(x)\|^2 \sim e^{-x^2/2\Delta x^2}$ $\phi_k \leftrightarrow x$ fluctuations are statistically Gaussian i.e., perturbations of all sizes occur, but probability of finding perturbation of size $\delta(R)$ on scale R is distributed as a Gaussian
- ★ inflaton perturbations → reheating
 → radiation, matter perturbations
 same levels in both: "adiabatic"
- ★ so far: only looked at density (scalar) perturbations but also tensor perturbations \rightarrow gravity waves!
- $\stackrel{i}{\sim}$ ******** All of these are bona fide *pre*dictions of inflation and are testable! *Q: how?*

Testing Inflation: Status to Date

test by measuring density fluctuations and their statistical properties on various scales at various epochs

CMB at large angles (large scales, decoupling)

- nearly scale invariant! woo hoo! (COBE 93)
- Gaussian distribution (COBE, WMAP)
 www: 3-yr WMAP T distribution
 or nearly so...see Yadav & Wandelt (2007)
- WMAP 2008: evidence for tilt! favors large scales ("red")! $\alpha = -0.040^{+0.014}_{-0.013}$ nonzero at $\sim 3\sigma$!

These did not have to be true!

 $\overline{\omega}$ Not guaranteed to be due to inflation but very encouraging nonetheless

Inflation Scorecard

Summary:

Inflation designed to solve horizon, flatness, smoothness does this, via accelerated expansion driven by inflaton

But unexpected bonus: structure inflaton field has quantum fluctuations imprinted before horizon crossing later return as density fluctuations \rightarrow inflationary seeds of cosmic structure?!

Thus far: observed cosmic density fields have spectrum, statistics as predicted by inflation

Future:

14

• gravity wave background

(directly or by CMB polarization)

• departures from scale invariance \rightarrow probes of $V(\phi)$?

Director's Cut Extras

Fluctuation Spectrum: In More Detail

Starting point of more rigorous treatment in equation of motion

$$\ddot{\phi} + 3H\dot{\phi} - \nabla^2\phi + V'(\phi) = 0 \tag{12}$$

write field as sum

$$\phi = \phi_{\text{classical}}(t) + \delta\phi(t, \vec{x}) \tag{13}$$

• classical amplitude $\phi_{cl}(t)$

spatially homogeneous: *smooth, classical, background* field evolves according to classical equation of motion \rightarrow this has been our focus thus far; now add

- quantum fluctuations $\delta \phi(t, \vec{x})$
- these can vary across space and with time

decompose spatial part of fluctuations into plane waves

$$\delta\phi(t,\vec{x}) = \sum_{\vec{k}} \delta\phi_{\vec{k}}(t) e^{i\vec{k}\cdot\vec{x}_{\text{com}}}$$
(14)

convenient to label Fourier modes by comoving wavelength $\lambda \equiv \lambda_{com}$, wavenumber $k \equiv k_{com} = 2\pi/\lambda_{com}$ but physical wavelength $\lambda_{phys} = a\lambda_{com}$, wavenumber $k_{phys} = k/a$

as long as quantum perturbations $\delta\phi$ small (linear evolution) each wavelength-i.e., scale-evolves independently \rightarrow main reason to use Fourier modes

classically $\delta \phi = (\delta \phi)^2 = 0$ by definition!

 \downarrow Q: what is physical significance of quantum excitations in ϕ ?

The Quantum Inflaton Field

quantum mechanically:

- \bullet true ϕ has fluctuations around background value
- each \vec{k} mode \leftrightarrow independent quantum states (oscillators)
- mode fluctuations *quantized* \rightarrow quanta are inflaton particles analogous to photons as EM quanta
- occupation numbers: $n_{\vec{k}} > 0 \rightarrow$ real particles present
- if $n_{\vec{k}} = 0 \rightarrow \langle \delta \phi \rangle = 0$ no particles (vacuum/ground state) but zero-point fluctuations still present $\langle \delta \phi^2 \rangle \neq 0$

Fluctuation Lagrangian

expand each \vec{k} mode around classical value

$$\mathcal{L}_{\vec{k}} = \frac{1}{2} \delta \dot{\phi}_{\vec{k}}^2 - \frac{1}{2} \frac{k^2}{a^2} \delta \phi_{\vec{k}}^2 - \frac{1}{2} V''(\phi_{\mathsf{CI}}) \delta \phi_{\vec{k}}^2 - V(\phi_{\mathsf{CI}}) \qquad (15)$$

$$\approx \frac{1}{2} \delta \dot{\phi}_{\vec{k}}^2 - \frac{1}{2} \frac{k^2}{a^2} \delta \phi_{\vec{k}}^2 \qquad (16)$$

where slow roll \rightarrow potential terms small

 \rightarrow a massless simple harmonic oscillator

 $\delta\phi$ vacuum state: zero point fluctuations

formally same a quantum harmonic oscillator! for each k mode, fluctuation amplitudes random but probability distribution is like n = 0 oscillator

$$P(\delta\phi_{\vec{k}}) \propto e^{-\delta\phi_{\vec{k}}^2/2\sigma_{\vec{k}}^2}$$
(17)

19

where variance $\sigma_{\vec{k}}^2 = \langle \delta \phi_{\vec{k}}^2 \rangle$ \rightarrow vacuum fluctuation amplitudes have *gaussian* distribution

Total ϕ energy density is $\rho_{\phi} = \rho_{\text{background}} + \rho_{\text{zeropoint}} + \rho_{\text{particles}}$ pre-inflation: could have $\rho_{\text{particles}} \neq 0$ in fact: if thermalized, $\rho_{\text{particles}} \propto T^4$ (radiation) \rightarrow inflation only begins when $\rho_{\text{background}} \gg \rho_{\text{particles}}$ Q: what happens to inflatons after inflation begins? after inflation begins, universe rapidly expanded, cooled inflatons diluted away

 \rightarrow inflation field driven to vacuum (ground) state

Since ϕ in quantum vacuum state: fluctuations are zero-point

- \rightarrow gaussian distribution of amplitudes in each k mode
- \rightarrow strong prediction of slow-roll inflation

now want to solve for size of rms σ_k at each mode

classically, perturbations have equation of motion

$$\frac{d^2}{dt^2}\delta\phi + 3H\frac{d}{dt}\delta\phi + \frac{k^2}{a^2}\delta\phi + V''\delta\phi = 0$$
(18)

$$\frac{d^2}{dt^2}\delta\phi + 3H\frac{d}{dt}\delta\phi + \frac{k^2}{a^2}\delta\phi \approx 0$$
(19)

21

(in slow roll: V'' term negligible)

Sketch of Quantum Treatment

Promote $\delta \phi \rightarrow$ operator $\hat{\delta \phi}$ plane wave expansion: $\hat{\delta \phi} = \sum_{\vec{k}} \hat{\delta \phi}_{\vec{k}}$ introduce annihilation, creation operators $\hat{a}_{\vec{k}}$, $\hat{a}_{-\vec{k}}^{\dagger}$, then

$$\widehat{\delta\phi}_{\vec{k}} = w_k(t)\,\widehat{a}_{\vec{k}} + w_k^*(t)\,\widehat{a}_{-\vec{k}}^\dagger \tag{20}$$

where $w_k(t)$ is a solution of field equation

$$\ddot{w}_k + 3H\dot{w}_k + \left(\frac{k}{a}\right)^2 w_k = 0 \tag{21}$$

Compare limits:

22

• $k/a \gg H \rightarrow k \gg aH \rightarrow \lambda \ll 2\pi d_{H,com}$ *Q: physical interpretation of limit?* w_k evolves as harmonic oscillator (free massless field)

•
$$k/a \ll H \rightarrow k \ll aH \rightarrow \lambda \gg 2\pi d_{H,\text{com}}$$

Q: physical interpretation of limit?
$$\dot{w}_k \propto a^{-3} \rightarrow 0 \rightarrow w_k$$
 value "frozen"

Inflation Perturbations: Evolution and Horizons

sub-horizon scales $\lambda \ll 2\pi d_{H,com}$ inflaton fluctuations $\delta \phi$ are causally connected evolve like harmonic oscillator \rightarrow rms amplitude $\langle |w_k|^2 \rangle$ constant

but cosmic acceleration during inflation $\rightarrow d_{H,\text{com}}$ shrinks since $\dot{d}_{H,\text{com}} = d(aH)^{-1}/dt = d(\dot{a}^{-1})/dt = -\ddot{a}/\dot{a}^2 < 0$ during inf $d_{H,\text{com}}$ shrinkage: initially sub-horizon scales \rightarrow super-horizon

super-horizon scales $\lambda \gg 2\pi d_{H,com}$

NG

fluctuations out of causal contact amplitude "frozen in" until post-inflation $d_{H,com}$ regrows

Inflation Perturbations: Spectrum of Amplitudes

examine fluctuations from vacuum

 \rightarrow find expected amplitudes w_k

since fluctuations have quantum origin

- cannot predict definite values for mode amplitudes, phases
- but *can* predict statistical properties

for *different* modes \vec{k} and $\vec{k'}$, *Q: what do we expect?*

for *different* modes \vec{k} and \vec{k}' , expectation is

$$\langle \widehat{\delta\phi}_{\vec{k}} \widehat{\delta\phi}_{\vec{k}'} \rangle = w_k w_{k'} \langle \widehat{a}_{\vec{k}} \widehat{a}_{\vec{k}'}^{\dagger} \rangle + \text{c.c.} = 0$$
(22)

because $\langle \hat{a}_{\vec{k}} \hat{a}_{\vec{k}'}^{\dagger} \rangle = \langle \hat{a}_{\vec{k}} \rangle \langle \hat{a}_{\vec{k}'}^{\dagger} \rangle = 0$ \Rightarrow modes are statistically independent note: true even if $|\vec{k}| = |\vec{k}'| = k$ but $\vec{k} \cdot \vec{k}' = 0$ i.e., different directions $\vec{k} = k\hat{x}, \vec{k}' = k\hat{y}$ \Rightarrow phase $e^{i\vec{k}\cdot\vec{x}}$ is random

for a single mode k, vacuum expectation is

$$\langle \widehat{\delta \phi}_{\vec{k}}^2 \rangle = |w_k|^2 \langle \widehat{a} \widehat{a}^{\dagger} + \widehat{a}^{\dagger} \widehat{a} \rangle = |w_k|^2 \neq 0$$
(23)
$$= \frac{H^2}{2L^3 k^3}$$
(24)

where last expression

- \mathfrak{S} from full quantum calculation, in box of size L
 - to be evaluated at horizon crossing: $k_{phys} = H \rightarrow k = aH$

each in phase space volume

$$d^{3}xd^{3}k = \frac{1}{(2\pi L)^{3}} 4\pi k^{2}dk = \frac{4\pi k^{3}}{(2\pi L)^{3}} \frac{dk}{k}$$
(25)

then fluctuation amplitude is

$$P_{\phi}(k)\frac{dk}{k} \equiv \frac{4\pi k^3}{(2\pi L)^3} |\delta\phi_k|^2 \frac{dk}{k} = \left(\frac{H}{2\pi}\right)^2 \frac{dk}{k}$$
(26)

and so the phase space fluctuation density in ϕ is

$$P_{\phi}(k) = \left(\frac{H}{2\pi}\right)_{k=aH}^{2}$$
(27)

as before, but now

- \bullet explicitly seen independence of k
- know when to evaluate: at horizon crossing k = aH

26

Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale $\lambda = 2\pi/k$ key idea: causal physics acts until $\lambda > d_{\rm H,com}$: "horizon crossing" \rightarrow quantum fluctuations laid down while inside $d_{\rm H,com}$ "frozen in" once outside of $d_{\rm H,com}$

from last time: quantum analysis gives fluctuation variance

$$\left\langle (\delta \phi_k)^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2$$
 (28)

to be evaluated at horizon crossing: $k = 1/d_{H,com} = aH$

Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale $\lambda = 2\pi/k$ key idea: causal physics acts until $\lambda > d_{\rm H,com}$: "horizon crossing" \rightarrow quantum fluctuations laid down while inside $d_{\rm H,com}$ "frozen in" once outside of $d_{\rm H,com}$

from last time: quantum analysis gives fluctuation variance

$$\left\langle (\delta \phi_k)^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2$$
 (29)

to be evaluated at horizon crossing: $k = 1/d_{H,com} = aH$

Inflationary Density Perturbations: Spectrum

Recall: density fluctuations \rightarrow start inflating earlier (later)

 \rightarrow more (less) expansion than average extra scale factor boost $\delta a/a = H\delta t = H\delta \phi/\dot{\phi} \rightarrow$ larger volume \rightarrow density perturbations have mean square

$$\delta_{\inf}^{2}(k) \equiv \left(\frac{\delta\rho}{\rho}\right)_{k}^{2}$$
(30)
$$\sim \left(\frac{\delta a}{a}\right)^{2} = \left(\frac{H}{\dot{\phi}}\right)^{2} (\delta\phi)^{2} = \left(\frac{H}{\dot{\phi}}\right)^{2} \left(\frac{H}{2\pi}\right)^{2}$$
(31)

evaluated at aH = k

slow roll: H, $\dot{\phi}$ slowly varying \rightarrow expect fluctuation amplitude $\sim H^4/\dot{\phi}^2 \sim const$ over wide range of k In particular: slow roll $\dot{\phi} = -3V'/H$, and $H^2 = V/3m_{\rm pl}^2$, which gives

$$\delta_{\inf}^{2}(k) = \frac{1}{12\pi^{2}m_{\text{pl}}^{6}} \left(\frac{V^{3}}{V^{2}}\right) = \frac{1}{24\pi^{2}m_{\text{pl}}^{4}} \left(\frac{V}{\epsilon}\right)$$
(32)

where $\epsilon = m_{\rm pl} (V'/V)^2/2$

anticipating \sim power law behavior, define $\delta_{\inf}^2(k)\sim k^{\alpha(k)}$ then scale dependence is

$$\alpha(k) = \frac{d \ln \delta_{\inf}^2(k)}{d \ln k}$$
(33)

evaluated when comoving scale k = aH crosses horizon

 $_{\mbox{\scriptsize \ensuremath{\omega}}}$ i.e., this relates k to homogeneous $a,~\phi$ values

Underlying physical question:

how do cosmic properties—e.g., $H, \rho \approx V$ —change while the universe inflates as it slowly rolls?

- if no change $\rightarrow \dot{\phi} = 0 \rightarrow \text{same } V, H \text{ always } \rightarrow \epsilon = 0$ all scales see same U when leaving horizon k = aH \rightarrow all scales have same quantum fluctuations
- but *slow* roll \neq *no* roll!

 $\dot{\phi} \neq 0 \rightarrow U$ properties *do* change

recall: $\delta_{\inf}^2(k) \propto V/\epsilon$ and as slowly roll $\rightarrow V$ decreasing, ϵ increasing and horizon scale $d_{H,com}$ also decreases Q: so which scales get larger perturbations? smaller?

31

because V decreasing, ϵ increasing

 $\delta_{\inf}^2(k) \propto V/\epsilon$ decreases with time

 \rightarrow smaller perturbations later in slow roll

since horizon scale $d_{H,com}$ decreases

later times \leftrightarrow smaller scales

- \Rightarrow slow roll \rightarrow *smaller* perturbations on *smaller* scales
- \Rightarrow perturbation spectrum *tilted* to large scales \rightarrow small k

in slow roll, k = aH change mostly due to a:

$$d\ln k \approx d\ln a = \frac{da}{a} = H dt$$
(34)

recast in terms of inflaton potential

$$=\frac{Hd\phi}{\dot{\phi}}=-3\frac{H^2}{V'}d\phi \tag{35}$$

32

and so

$$\frac{d}{d\ln k} = -m_{\rm pl}^2 \frac{V'}{V} \frac{d}{d\phi} \tag{36}$$

Using this, can show:

$$\alpha(k) = \frac{d \ln \delta_{\inf}^2(k)}{d \ln k} = -6\epsilon + 2\eta$$
(37)

i.e., perturbation spectrum $\delta_{\inf}^2(k) \propto k^{-6\epsilon+2\eta}$

Major result!

Q: why? what does this mean physically? for cosmology? for inflation?

ω