
Astro 596/496 PC

Lecture 30

April 5, 2010

Announcements:

• PF5 was due at noon

• PS5 out, due in class next Monday

Last time: inflation and cosmic lumpiness

classical inflaton field removes all spatial perturbations

→ has zero point modes, inflaton excitations

Today:

quantum fluctuations in inflaton field

inevitably lead to density perturbations

if this really happened:

we are descendant of quantum fluctuations!
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Quantum Mechanics to the Rescue

but quantum mechanics exists and is mandatory

classical φ field → quantized as inflatons

think ~E, ~B vs photons

inflaton field must contain quantum fluctuations

before, during inflation

What we want: statistical properties of fluctuations

• typical magnitude of fluctuations δφ

• how δφ depends on lengthscales

• corresponding fluctuations in ρφ
• correlations at different length scales2



Fluctuation Amplitude: Rough Estimate

quantum fluctuation → turn to uncertainty principle

δE δt ∼ h̄ ∼ 1 (1)

recall: energy density is

ρφ =
1

2
φ̇2 +

1

2
(∇φ)2 + V (2)

if perturbation from classical: φ(t, ~x) = φcl(t) + δφ(t, ~x),

then for small δφ,

δρ ∼ (∇δφ)2 + V ′(φcl)δφ ≈ (∇δφ)2 (3)

since slow roll → V ′ small (flat potential)

Q: what is characteristic volume for fluctuation?

Q: what is characteristic timescale δt?
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H−1 is only lengthscale in problem

so ∇δφ ∼ δφ/H−1 ⇒ δρ ∼ H2(δφ)2

so in Hubble volume VH = d3H = H−3, energy fluctuation is

δE = δρ VH =
(δφ)2

H
(4)

characteristic timescale is δt ∼ 1/H, so

δE δt ∼
(δφ)2

H2
∼ 1 (5)

and typical (root-mean-square) inflaton fluctuation is

δφ ∼ H (6)

had to be! H is the only other

dimensionally correct scale in the problem!

Note: H ∼ const during inflation

all fluctuations created with ∼ same amplitude
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What Just Happened?

To summarize:

• classically, inflaton field φcl quickly

inflates away any of its initial perturbations

• but quantum fluctuations δφ unavoidable

created and persist throughout inflation

• in any region, amplitude δφ(~x) random

but typical value δφ ∼ H

Q: what do the presence of inflaton fluctucations

mean for inflationary dynamics in different regions?

Q: what consequences/signatures of fluctuations

might remain after inflation?

5



Fluctuation Evolution and the Cosmic Horizon

in presence of fluctuations δφ and δρφ
can view inflationary universe as ensemble of “sub-universes”

evolving independently–same slow roll, but

with different φ, ρφ at a fixed t

classical discussion → ensemble average

now want behavior typical deviation from mean

particle horizon ∼ H−1 critical

• already saw: sets scale for fluctuation

• also “shuts off” fluctuation evolution

consider perturbation of lengthscale λ

• leaves horizon when H ∼ 1/λ

• then can’t evolve further: keeps same δρ/〈ρ〉

• until after inflation, when re-enters horizon
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Bottom line: at any given scale λ

relevant perturbation is the one born

during inflation when λ ∼ 1/H

dimensionless perturbation amplitude:

fraction of mean density in horizon δH ≡ δρ/〈ρ〉

on scale λ, amplitude fixed at horizon exit

δφ ∼ H (in fact, H/2π)

→ perturbed universe starts inflating at higher φ

or undergoes inflation for different duration δt ≃ δφ/φ̇

this gives an additional expansion

δ ln a =
δa

a
= Hδt =

H2

2πφ̇
(7)
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but inflation exit is set at fixed φend

and Vend ∼ ρend

perturbed energy density at end of inflation set by

different expansion at inflation exit:

δH ≡
δρ

〈ρ〉
(8)

∼
δ(a3Vend)

〈a3Vend〉
∼
δa

a
=

H2

2πφ̇
(9)

evaluated at any scale λ at horizon crossing

i.e., when λ ∼ 1/H

⇒ density perturbations created at all lengthscales!

caution: quick-n-dirty result

but gives right answer

in particular, fluctuation indep of lengthscale
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What Just Happened? ...Part Deux

the classical behavior of a slow-rolling φ

lead to homogeneity, isotropy

regardless of initial conditions

⇒ fixes horizon, flatness, monopole problem

the quantum fluctuations in φ

lead to density perturbations on all lengthscales

including scales ≫ dhor today

these perturbations form the “seeds” for cosmic structures!

quantum mechanics & uncertainty principle

essential for the existence of cosmic structure

“The Universe is the ultimate free lunch.”

– Alan Guth
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Evolution of Quantum Perturbations

Write spatial fluctuations in inflaton field

as sum (integral) of Fourier modes:

δφ(t, ~x) =
∑

~k

δφ~k(t)e
i~k·~xcom (10)

where k = kcom = 2π/λcom is comoving wavenumber

classical part of δφ~k inflated away

but quantum part crucial

in Director’s Cut notes:

• inflaton field begins in vacuum state

• evolves as a quantum harmonic oscillator

→ dominated by vacuum=ground state

1
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Inflation Spectrum
Slightly Tilted Scale Invariance

recall: perturbation leaving horizon have very similar amplitude

during inflation → nearly same for all lengthscales ↔ k

perturbation rms amplitude

δ2inf(k) ∝ k−6ǫ+2η (11)

⋆ successful inflation ⇔ slow roll ⇔ ǫ, η ≪ 1 demands

perturbation spectrum nearly independent of scale

nearly “self-similar,” without characteristic scale

“Peebles-Harrison-Zel’dovich” spectrum

⋆ successful inflation must end → ǫ, η 6= 0

demands small departures from scale-invariance

“tilted spectrum”

1
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Inflation Spectrum
Statistical Properties

⋆ Recall: inflaton quantum modes ↔ harmonic oscillator

dominated by vacuum ↔ ground state ‖ψsho(x)‖
2 ∼ e−x

2/2∆x2

φk ↔ x fluctuations are statistically Gaussian

i.e., perturbations of all sizes occur, but

probability of finding perturbation of size δ(R)

on scale R is distributed as a Gaussian

⋆ inflaton perturbations → reheating

→ radiation, matter perturbations

same levels in both: “adiabatic”

⋆ so far: only looked at density (scalar) perturbations

but also tensor perturbations → gravity waves!

⋆⋆⋆⋆⋆ All of these are bona fide predictions of inflation

and are testable! Q: how?
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Testing Inflation: Status to Date

test by measuring density fluctuations

and their statistical properties

on various scales at various epochs

CMB at large angles (large scales, decoupling)

• nearly scale invariant! woo hoo! (COBE 93)

• Gaussian distribution (COBE, WMAP)

www: 3-yr WMAP T distribution

or nearly so...see Yadav & Wandelt (2007)

• WMAP 2008: evidence for tilt! favors large scales (“red”)!

α = −0.040+0.014
−0.013 nonzero at ∼ 3σ!

These did not have to be true!

Not guaranteed to be due to inflation

but very encouraging nonetheless
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Inflation Scorecard

Summary:

Inflation designed to solve horizon, flatness, smoothness

does this, via accelerated expansion driven by inflaton

But unexpected bonus: structure

inflaton field has quantum fluctuations

imprinted before horizon crossing

later return as density fluctuations

→ inflationary seeds of cosmic structure?!

Thus far: observed cosmic density fields

have spectrum, statistics as predicted by inflation

Future:

• gravity wave background

(directly or by CMB polarization)

• departures from scale invariance → probes of V (φ)?
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Director’s Cut Extras

1
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Fluctuation Spectrum: In More Detail

Starting point of more rigorous treatment

in equation of motion

φ̈+ 3Hφ̇−∇2φ+ V ′(φ) = 0 (12)

write field as sum

φ = φclassical(t) + δφ(t, ~x) (13)

• classical amplitude φcl(t)

spatially homogeneous: smooth, classical, background field

evolves according to classical equation of motion

→ this has been our focus thus far; now add

• quantum fluctuations δφ(t, ~x)

these can vary across space and with time

1
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decompose spatial part of fluctuations into plane waves

δφ(t, ~x) =
∑

~k

δφ~k(t)e
i~k·~xcom (14)

convenient to label Fourier modes by

comoving wavelength λ ≡ λcom, wavenumber k ≡ kcom = 2π/λcom

but physical wavelength λphys = aλcom, wavenumber kphys = k/a

as long as quantum perturbations δφ small (linear evolution)

each wavelength–i.e., scale–evolves independently

→ main reason to use Fourier modes

classically δφ = (δφ)2 = 0 by definition!

Q: what is physical significance of quantum excitations in φ?1
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The Quantum Inflaton Field

quantum mechanically:

• true φ has fluctuations around background value

• each ~k mode ↔ independent quantum states (oscillators)

• mode fluctuations quantized → quanta are inflaton particles

analogous to photons as EM quanta

• occupation numbers: n~k > 0 → real particles present

• if n~k = 0 → 〈δφ〉 = 0 no particles (vacuum/ground state)

but zero-point fluctuations still present 〈δφ2〉 6= 0

1
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Fluctuation Lagrangian

expand each ~k mode around classical value

L~k =
1

2
δ̇φ

2
~k
−

1

2

k2

a2
δφ2
~k
−

1

2
V ′′(φcl)δφ

2
~k
− V (φcl) (15)

≈
1

2
δ̇φ

2
~k
−

1

2

k2

a2
δφ2
~k

(16)

where slow roll → potential terms small

→ a massless simple harmonic oscillator

δφ vacuum state: zero point fluctuations

formally same a quantum harmonic oscillator!

for each k mode, fluctuation amplitudes random

but probability distribution is like n = 0 oscillator

P(δφ~k) ∝ e
−δφ2

~k
/2σ2

~k (17)

where variance σ2
~k

= 〈δφ2
~k
〉

→ vacuum fluctuation amplitudes have gaussian distribution

1
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Total φ energy density is ρφ = ρbackground + ρzeropoint + ρparticles

pre-inflation: could have ρparticles 6= 0

in fact: if thermalized, ρparticles ∝ T4 (radiation)

→ inflation only begins when ρbackground ≫ ρparticles

Q: what happens to inflatons after inflation begins?

2
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after inflation begins, universe rapidly expanded, cooled

inflatons diluted away

→ inflation field driven to vacuum (ground) state

Since φ in quantum vacuum state: fluctuations are zero-point

→ gaussian distribution of amplitudes in each k mode

→ strong prediction of slow-roll inflation

now want to solve for size of rms σk at each mode

classically, perturbations have equation of motion

d2

dt2
δφ+ 3H

d

dt
δφ+

k2

a2
δφ+ V ′′δφ = 0 (18)

d2

dt2
δφ+ 3H

d

dt
δφ+

k2

a2
δφ ≈ 0 (19)

(in slow roll: V ′′ term negligible)

2
1



Sketch of Quantum Treatment

Promote δφ → operator δ̂φ
plane wave expansion: δ̂φ =

∑
~k
δ̂φ~k

introduce annihilation, creation operators â~k, â
†

−~k
, then

δ̂φ~k = wk(t) â~k + w∗
k(t) â

†

−~k
(20)

where wk(t) is a solution of field equation

ẅk + 3Hẇk +

(
k

a

)2

wk = 0 (21)

Compare limits:

• k/a≫ H → k ≫ aH → λ ≪ 2πdH,com

Q: physical interpretation of limit?

wk evolves as harmonic oscillator (free massless field)

• k/a≪ H → k ≪ aH → λ ≫ 2πdH,com

Q: physical interpretation of limit?

ẇk ∝ a−3→ 0 → wk value “frozen”

2
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Inflation Perturbations: Evolution and Horizons

sub-horizon scales λ≪ 2πdH,com

inflaton fluctuations δφ are causally connected

evolve like harmonic oscillator → rms amplitude 〈|wk|
2〉 constant

but cosmic acceleration during inflation → dH,com shrinks

since ḋH,com = d(aH)−1/dt = d(ȧ−1)/dt = −ä/ȧ2 < 0 during inf

dH,com shrinkage: initially sub-horizon scales → super-horizon

super-horizon scales λ≫ 2πdH,com

fluctuations out of causal contact

amplitude “frozen in” until post-inflation dH,com regrows
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Inflation Perturbations: Spectrum of Amplitudes

examine fluctuations from vacuum

→ find expected amplitudes wk

since fluctuations have quantum origin

• cannot predict definite values for mode amplitudes, phases

• but can predict statistical properties

for different modes ~k and ~k′,

Q: what do we expect?
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for different modes ~k and ~k′,

expectation is

〈δ̂φ~kδ̂φ~k′〉 = wkwk′〈â~kâ
†
~k′
〉 + c.c. = 0 (22)

because 〈â~kâ
†
~k′
〉 = 〈â~k〉〈â

†
~k′
〉 = 0

⇒ modes are statistically independent

note: true even if |~k| = |~k′| = k but ~k · ~k′ = 0

i.e., different directions ~k = kx̂,~k′ = kŷ

⇒ phase ei
~k·~x is random

for a single mode k, vacuum expectation is

〈δ̂φ
2
~k〉 = |wk|

2〈ââ† + â†â〉 = |wk|
2 6= 0 (23)

=
H2

2L3k3
(24)

where last expression

• from full quantum calculation, in box of size L

• to be evaluated at horizon crossing: kphys = H → k = aH

2
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each in phase space volume

d3xd3k =
1

(2πL)3
4πk2dk =

4πk3

(2πL)3
dk

k
(25)

then fluctuation amplitude is

Pφ(k)
dk

k
≡

4πk3

(2πL)3
|δφk|

2dk

k
=

(
H

2π

)2 dk

k
(26)

and so the phase space fluctuation density in φ is

Pφ(k) =

(
H

2π

)2

k=aH
(27)

as before, but now

• explicitly seen independence of k

• know when to evaluate: at horizon crossing k = aH

2
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Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale λ = 2π/k key idea: causal

physics acts until λ > dH,com: “horizon crossing”

→ quantum fluctuations laid down while inside dH,com

“frozen in” once outside of dH,com

from last time: quantum analysis gives fluctuation variance

〈
(δφk)

2
〉
=

(
H

2π

)2

k=aH
(28)

to be evaluated at horizon crossing: k = 1/dH,com = aH

2
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Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale λ = 2π/k key idea: causal

physics acts until λ > dH,com: “horizon crossing”

→ quantum fluctuations laid down while inside dH,com

“frozen in” once outside of dH,com

from last time: quantum analysis gives fluctuation variance

〈
(δφk)

2
〉
=

(
H

2π

)2

k=aH
(29)

to be evaluated at horizon crossing: k = 1/dH,com = aH

2
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Inflationary Density Perturbations: Spectrum

Recall: density fluctuations → start inflating earlier (later)

→ more (less) expansion than average

extra scale factor boost δa/a = Hδt = Hδφ/φ̇ → larger volume

→ density perturbations have mean square

δ2inf(k) ≡

(
δρ

ρ

)2

k

(30)

∼

(
δa

a

)2

=

(
H

φ̇

)2

(δφ)2 =

(
H

φ̇

)2 (
H

2π

)2

(31)

evaluated at aH = k

slow roll: H, φ̇ slowly varying

→ expect fluctuation amplitude ∼ H4/φ̇2 ∼ const

over wide range of k
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In particular: slow roll φ̇ = −3V ′/H,

and H2 = V/3m2
pl, which gives

δ2inf(k) =
1

12π2m6
pl

(
V 3

V ′2

)
=

1

24π2m4
pl

(
V

ǫ

)
(32)

where ǫ = mpl(V
′/V )2/2

anticipating ∼ power law behavior,

define δ2inf(k) ∼ kα(k)

then scale dependence is

α(k) =
d ln δ2inf(k)

d ln k
(33)

evaluated when comoving scale k = aH crosses horizon

i.e., this relates k to homogeneous a, φ values3
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Underlying physical question:

how do cosmic properties–e.g., H, ρ ≈ V –change

while the universe inflates as it slowly rolls?

• if no change → φ̇ = 0 → same V,H always → ǫ = 0

all scales see same U when leaving horizon k = aH

→ all scales have same quantum fluctuations

• but slow roll 6= no roll!

φ̇ 6= 0 → U properties do change

recall: δ2inf(k) ∝ V/ǫ

and as slowly roll → V decreasing, ǫ increasing

and horizon scale dH,com also decreases

Q: so which scales get larger perturbations? smaller?
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because V decreasing, ǫ increasing

δ2inf(k) ∝ V/ǫ decreases with time

→ smaller perturbations later in slow roll

since horizon scale dH,com decreases

later times ↔ smaller scales

⇒ slow roll → smaller perturbations on smaller scales

⇒ perturbation spectrum tilted to large scales → small k

in slow roll, k = aH change mostly due to a:

d ln k ≈ d ln a =
da

a
= H dt (34)

recast in terms of inflaton potential

=
Hdφ

φ̇
= −3

H2

V ′
dφ (35)3
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and so

d

d ln k
= −m2

pl
V ′

V

d

dφ
(36)

Using this, can show:

α(k) =
d ln δ2inf(k)

d ln k
= −6ǫ+ 2η (37)

i.e., perturbation spectrum δ2inf(k) ∝ k−6ǫ+2η

Major result!

Q: why? what does this mean physically? for cosmology? for

inflation?
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