Astro 596/496 PC
Lecture 33
April 14, 2010

Announcements:

e PF6 — last preflight! — due next Monday noon

e ICES available online — please do it!

e Physics Colloguium this week: Peter Axel Lecture
Michael Ramsey-Musolf, Wisconsin
“Nuclear Science and the New Standard Model”
= cosmic baryogenesis and the LHC


./Lectures/Lect33.html

Last time: density fluctuations as a function of scale

— have to learn to translate: real space < Fourier space

e Fourier mode amplitudes §,, — power spectrum P(k) = |§.|2

e Observed power spectrum: small k, large scales have P(k) ~ k!
large k, small scales have P(k) — k3

e power spectrum peak at kpegk ~ 0.02 h—1 Mpc, Apeak =~ 300

Mpc

e fluctuation amplitude on comoving scale A = 27 /k:

v
A% (k) = —=k3 P(k)
22
e Observed A &1 at A S 20 Mpc

in today’'s extras: variance in R = 8h—1l\/|pc sphere:

og ~ A(k=1/R) = 0.8 § large/nonlinear on scales < 10 Mpc

v T hese results cry out for theoretical understanding!


http://www.journals.uchicago.edu/action/showFullPopup?doi=10.1086%2F382125&id=fg23
http://arxiv.org/abs/0803.0547

Theory of Cosmological Perturbations

Treat structure formation as initial value problem

e given initial conditions: ‘seeds”
i.e., adopt spectrum of primordial density perturbations
prescription for initial p;(Z), ¢ € baryons, radiation, DM, DE...
e.g., inflation: scale invariant, gaussian, adiabatic

e follow time evolution of p;(¥)—i.e., §; for each species i

e compare with observed measures of structure

* agreement (or lack thereof) constrains primordial seeds
e.g., dark matter, inflation, quantum gravity, ...

We want to describe dynamics of cosmic inhomogeneities
» Q: which forces relevant? which irrelevant? which scary?



Dynamics Cosmological Perturbations: Overview

Forces/interactions in perturbed, inhomogeneous universe
involve same cosmic particle/field content
as smooth/unperturbed universe

but: can manifest in new/different ways due to spatial variations

Definitely relevant forces on perturbations

e gravity. overdensities have extra attraction
over that of “background’” FRW universe

e pressure. baryons have thermal pressure P = nkT’
photons exert radiation pressure on baryons pre-decoupling
pressure gradients present, unlike in homog. background

Probably irrelevant forces on perturbations (will ignore)
e Nneutrino interactions with self, other species
e dark matter non-gravity interactions with self, or other species



Scary forces on perturbations (will ignore for now, but worry about)
e if dark energy is a field ¢, perturbations d¢

exert inhomogeneous negative pressure

why scary? unknown underlying physics
e Mmagnetic fields — pressure, MHD forces

why scary? unknown initial conditions (primordial B?)

At minimum: we will want to describe baryons & dark matter
as inflationary perturbations grow thru radiation, matter eras

— gravity and photon, baryon pressure mandatory
schematically:

acceleration = —gravity -+ pressure (1)

Q. implications for baryons vs dark matter?

For the species and forces we choose to follow:
Q. how can these be described exactly? approximately?
Q. what formalism needed?



Dynamics of Cosmological Perturbations: Toolbox

need dynamics of inhomogeneous “fluids”

in expanding FLRW background
* full treatment: general relativistic perturbation theory

mandatory for some results Q: which?
* good-enough treatment: Newtonian dynamics is FLRW

as usual, benefits: intuition & simplicity
costs: limited range of validity



Newtonian Fluid Dynamics & Self-Gravity

Each cosmic species is “fluid” described by fields

e mass density p(Z,t)

e velocity 7(Z,t)

e pressure P(Z,t): from equation of state P = P(p,T)

In Newtonian limit: dynamics governed by

mass conservation (continuity) ;o + V- (p%) =0

Euler: “F = ma" pdv/dt = pov + pv- V= —-VP — pVP
Note: fixed/non-comoving coords need ‘“‘convective derivative'
dv(Z,t)/dt = (O + x;0;)0 = O + ¥ - VU

Newtonian gravity: inverse square — Poisson V2 = 47Gp

" These are general (albeit Newtonian only)
— now apply to the Universe



Linear Theory 0: Newtonian, Non-expanding

consider static, uniform (infinite) distribution of matter
and introduce small perturbations

p(Z) = po [1+6(2)] (2)
v(Z) = u(Z) (3)
cDgrav(f) = Pg+ P1(%) (4)

where § < 1, and ®q1,u “small”

we want: time development of (initially) small perturbations
following Sir James Jeans

many key ideas of full expanding-Universe GR result
already appear herel

Newtonian fluid equations: continuity (mass conservation)

Op +V - (pv) = 0 (5)
pod + poV - U 0 (6)

Q



O

Euler (“F = mad");

pdT/dt = pdyT + pT- V¥ = —Vp— pVd (7)
poti —pocs V6 — poVdy (8)

where adiabatic sound speed ¢2 = 9p/dp

Q

Gravity: Poisson (Gauss' law = inverse square force)

V2d = 4nGp (9)
V2d, ~ 4nGpod (10)

note inconsistency=cheat! V2®dq # 47Gpg: “Jeans swindle”

can combine to single eq for linearized density contrast:
876 — c2V25 = 4nGpod (11)

Q: behavior for pressureless fluid? ‘“switched-off” gravity?
physical significance? important scales?
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Density contrast evolves as
8152(5 - c§V2(5 = 471G ppd (12)
solutions are of the form
5(t, %) = Ae!t—FT) = D(1) §o() (13)

where §5(Z) = e~ **'T is init Fourier amp
and time evolution is set by exponent w(k):

2 2
A
w? = cng — 4AnGpg = cg(kQ — k%) = <ﬁ> [(—J) — 1] (14)
k7 A
key scale: Jeans length

4
Va4rGpg Cs (15)

kj = Ag =

~ CsTfreefall
Cs \Gpo/m

associate Jeans mass: M(\;/2) = 4r/3 po(n/ky)3 ~ CE/G3/2p(1)/2
Q: physically, what expect for A < Aj?2 A > A\;7
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perturbation growth §,.(t) = 6.(tg)e™?, with
w? = c2k? — 4xGpg = 2 (k? — k%) (16)

Jeans length ~ cs7eeerg: SOUNd travel distance in freefall time
— A/Aj ~ number of pressure wave crossings during freefall

if k> kjso X< Ay, small scales: pressure can repel contraction
w real: oscillations about hydrostatic equlilb

if Kk <kjyso X> Ay, large scales: pressure ineffective
w imaginary, exponential collapse

runaway perturbation growth D(t) = e¥! ~ e1t/tfreerall
(also an uninteresting decaying mode e~ “?)

Q. but what about expanding Universe?



Summary of Jeans Analysis in Static Background

Sir James Jeans: Newtonian evolution of density perturbations
of non-expanding, static homogeneous background fluid

key Jeans results: B
e wavelike solutions, e.g., §; el(k-T—wt) = D () §o(T)
e dispersion relation w? = c2k? — 4nGpg ~ c2k? — 1/72 e,
e critical scale: Jeans wavenumber kj; = +/47Gpg/cs,
Jeans wavelength \; = 27 /kj = cs\/7/Gpo = CsTfreefall
e on large scales k < kj: w2 <0 — D(t) = eT¥!
density contrast grows exponentially for large-scale modes!
*x Jeans instability or gravitational instability

. Q: physical explanation? why only large-scale modes unstable?
> Q: in expanding U, should grav instability be stronger or weaker?
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Director’'s Cut Extras
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Correlation Function

Taking (6(2)2) gives (6p/p)ams
— overlap of density contrast with itself
(at same point in space)
What about £(7) = (0(¥)é(X + 7)) (fixed 7, avg over ¥)
(two-point or auto-) correlation function
e physical significance?
what if p at each space point independent of all other points?
opposite case: what if strictly periodic (lattice)?
e sign(s)? meaning of sign(s)?
e behavior at large, small |7]?
e significance of r at which &(r) = 07
e dependence on r = 7/|7]?



Correlation function: avg of density contrast overlap
with itself, “lagged” by spacing r

() = @ E+) = [6@) s+ & (D)

e physically: given § somewhere, measures typical ¢
separated by r
e if each space point independent of all others,
no matter how close, then:
E(F) =0 for ¥# 0
e but even if this were ever true,
local physics must remove independence
e since 6 € (—1,0), £ can be negative
(must be for some r!)

Demo—toy model transparencies
o Q: if structure in a lattice, what does & measure?
Q. what is significance of first zero of £€7
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Correlation function in an idealized ‘“Lattice Universe”

e if lattice of galaxy clusters, & oscillates with lattice periodicity
— gives typical cluster size, and typical cluster separation
true even if not lattice

Correlation function generally:

e first £(¥) = O gives typical cluster size

e small 7 must have é¢—(dp/p)? > 0
large . correlations must vanish £€—0
(cosmo principle/horizons)

e isotropy: &(7) = &£(r) independent of direction
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In Fourier space:

&(F) = i/5(96) 5(%+ 7) d3%

— /5 5 e—z(kz—l—q)fr —iq-T d3_’ d3"

(2W)6

_ (2@3/5 P(k) e RT3
dk

/AQ(k) e—zkr =

—

k

d3

x

(18)
(19)
(20)

(21)

correlation function is Fourier transf of power spectrum P(k)

Q. why observationally useful?

example of general case: P(k) "“all you need know"

about density field for Gaussian fluctuations...
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Power-Law Spectra

Consider a power-law power spectrum P(k) ~ k™
e useful approximation over large k ranges
e inflation predicts initial conditions of this form
e recall A2(k) ~ k3P(k) ~ k"3
homogeneity — n > —3
also must be cutoff at large k& Q: physical meaning?

Note: this is only a first approximation

But we will see that the true power spectrum

IS not a power law

e theory predicts deviations ( “baryon acoustic oscillations™)
e Observations have begun to detect these



Rough meaning of n:
for a lengthscale x ~ A ~ 1/k,

imagine “filtering” or “smoothing’ density field over this scale

i.e., replace true density at each point with
density averaged over radius x

then for each lengthscale x

corresponding mean mass scale is M ~ pgz3 ~ 23
then (drms)? ~ 01/3j A(k) dk/k ~ M~ (n+3)/3

and so root-mean-square mass fluctuation is

Srms ~ A (nt3)/6

recall: for large k, P(k) ~k — n=1
— Srms ~ M—2/3 drops for large masses:
approach homogeneity as M —oo

(22)
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Correlation Function
if P(k) ~ k™, then £ also a power law:
£(r) ~ r—(13): for galaxies

Sgai(r) = (5 h—f I\/I|oc>_1.8

where correlation length rcorr = 5 h~1 Mpc
sets scale where £ starts to become small
— typical structure size

note SDSS galaxy-galaxy ¢ index gives n ~ —1.2
consistent with SDSS galaxy-galaxy P(k) measurements
on the same scales (check!)

(23)



Filtered Density

Conceptually useful, and observationally practical
to imagine ‘“filtering” the density field p(¥)

over some lengthscale R, mass scale

R

1h—1Mpc

M(R) = pogV(R) = 1.16 x 10*?p 71 ( )3M@ (24)

— gives ‘“‘smoothed” field at this scale

To implement mathematically, introduce window function
weights the neighboring points; simplest is “top hat”

_ 1 <R
W(r,R)—{ 0 r>R (25)
using this, we have a “filtered variance”
A(R) = [d®F 8(@)?2 W(|il; R) (26)

— (2;3 [ kPG Wi~ A2~ 1/R)  (27)
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Scale of Nonlinearities Now

Key scale R: where ¢2(R) = 1 — linear/nonlinear boundary
empirically: near R ~ 10 Mpc

i.e., M ~ 101°My — rich clusters!

— Scale just becoming nonlinear today

key parameter set by convention: og a.k.a. “sigma-g8”

02 =0%(8 h~1Mpc) ~0.8

(28)
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Gaussian Perturbations

So far: compared sizes of perturbations across different scales k
— via shape of P(k) = |6|?

but can also ask: at one fixed scale &

what range of amplitudes 9;. appear?

i.e., sample Fourier amplitude ;. over

different volumes V > k=3

each a ‘“realization’” of true underlying cosmic sample
— what distribution results?

if Fourier mode amplitudes independent

and arise from causally disconnected regions
then central limit theorem (“law of averages”)
— 0, Gaussian distributed

— this is also prediction from inflation
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i.e., for density field smoothed over size R
probability of finding fluctuation amplitude ¢ is

P(§) = 1 6—52/202(R)
\/QWU(R)

implicitly require |0] < 1 Q: why

Observationally: holds as far as we can tell

(29)



