Astro 596/496 PC
 Lecture 34
 April 16, 2010

Announcements:

- PF6 - last preflight! - due Monday noon
- ICES available online - please do it!

Last time: began theory of structure formation
\rightarrow evolution of perturbations to a FLRW cosmology

Full technology: general relativistic perturbation theory
... and Boltzmann equation for evolution of
phase-space distribution function f for each cosmic species Mostly good-enough technology: Newtonian cosmology

Summary of Jeans Analysis in Static Background

Sir James Jeans: Newtonian evolution of density perturbations of non-expanding, static homogeneous background fluid

$$
\begin{equation*}
\partial_{t}^{2} \delta-c_{s}^{2} \nabla^{2} \delta=4 \pi G \rho_{0} \delta \tag{1}
\end{equation*}
$$

- wavelike solutions, e.g., $\delta_{\vec{k}} \propto e^{i(\vec{k} \cdot \vec{x}-\omega t)} \equiv D(t) \delta_{0}(\vec{x})$
- dispersion relation $\omega^{2}=c_{s}^{2} k^{2}-4 \pi G \rho_{0} \approx c_{s}^{2} k^{2}-1 / \tau_{\text {frefall }}^{2}$
- critical scale: Jeans wavenumber $k_{J}=\sqrt{4 \pi G \rho_{0}} / c_{s}$, Jeans wavelength $\lambda_{J}=2 \pi / k_{J}=c_{S} \sqrt{\pi / G \rho_{0}} \approx c_{S} \tau_{\text {freefall }}$
- on large scales $k<k_{J}: \omega^{2}<0 \rightarrow D(t)=e^{+\omega t}$ density contrast grows exponentially for large-scale modes!
* Jeans instability or gravitational instability

Q: physical explanation? why only large-scale modes unstable?
N
Q : what if $\delta_{0}<0$?
Q : in expanding U, should grav instability be stronger or weaker?

Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity \rightarrow okay for linear analysis inside Hubble length apply to matter-dominated U.

Coordinate choices

Eulerian time-indep grid \vec{x} fixed in physical space expansion moves unperturbed fluid elts past as $\vec{x}(t)=a(t) \vec{r}$
Lagrangian coords \vec{r} time-indep but expand in physical space following fluid element: locally comoving
\Rightarrow spatial gradients: $\nabla_{\vec{x}}=(1 / a) \nabla_{\vec{r}}$
Unperturbed (zeroth order) eqs, using $\rho_{0}=\rho_{0}(t), \vec{v}_{0}=\frac{a}{a} \vec{x}=\dot{a} \vec{r}$

$$
\begin{align*}
\partial_{t} \rho_{0}+\nabla \cdot\left(\rho_{0} \vec{v}\right)= & \dot{\rho_{0}}+\rho_{0} \frac{\dot{a}}{a} \nabla_{\vec{x}} \cdot \vec{x}=0 \tag{2}\\
\dot{\rho}_{0}+3 \frac{\dot{a}}{a} \rho_{0}=0 & \Rightarrow \rho_{0} \propto a^{-3} \tag{3}
\end{align*}
$$

Poisson:

$$
\begin{gathered}
\nabla^{2} \Phi_{0}=\frac{1}{x^{2}} \partial_{x}\left(x \partial_{x} \Phi_{0}\right)=4 \pi G \rho_{0} \Rightarrow \Phi_{0}=\frac{2 \pi G \rho_{0}}{3} x^{2}=\frac{2 \pi G \rho_{0}}{3} a^{2} r^{2} \\
\nabla_{\vec{x}} \Phi_{0}=\frac{4 \pi G \rho_{0}}{3} \vec{x} \quad \nabla_{\vec{r}} \Phi_{0}=\frac{4 \pi G \rho_{0}}{3} a \vec{r}
\end{gathered}
$$

Euler

$$
\begin{align*}
d(\dot{a} \vec{r}) / d t=\ddot{a} \vec{r}=\frac{\ddot{a}}{a} \vec{x} & =-\frac{4 \pi G \rho_{0}}{3} \vec{x} \tag{4}\\
\frac{\ddot{a}}{a} & =-\frac{4 \pi G \rho_{0}}{3}
\end{align*}
$$

Fried accel; with continuity \rightarrow Friedmann

Zeroth order fluid equations \rightarrow usual expanding U in non-rel approximation

Now add perturbations $\rho_{1}=\rho_{0} \delta, \vec{v}_{1}, \Phi_{1}$
simplest to use comoving (Lagrangian) coords follow observers in unperturbed Hubble flow
perturbation fluid elements $\vec{x}(t)=a(t) \vec{r}(t)$
peculiar fluid velocity $\vec{v}_{1}(t)=a(t) \vec{u}(t)$
plug in, keep only terms linear in perturbations $\left(\nabla=\nabla_{\vec{r}}\right)$
\rightarrow perturbation evolution to first (leading, linear) order

$$
\begin{align*}
\dot{\vec{u}}+2 \frac{\dot{a}}{a} \vec{u} & =-\frac{1}{a^{2}} \nabla \Phi_{1}-\frac{1}{a} \frac{\nabla \delta p}{\rho_{0}} \tag{6}\\
\dot{\delta} & =-\nabla \cdot \vec{u} \tag{7}
\end{align*}
$$

Note: if no pressure, density perturbations
v still have $\dot{u}=-2 H u \rightarrow u \propto 1 / a^{2}, v_{1} \propto 1 / a$
\rightarrow pressureless fluid's peculiar vel redshifts same as free particle

Linearized Density Evolution

now look for plane-wave solutions \leftrightarrow write as Fourier modes e.g., $\delta(\vec{r}) \sim e^{-i \vec{k} \cdot \vec{r}}$, with \vec{k} comoving wavenumber

$$
\begin{equation*}
\ddot{\delta}_{k}+2 \frac{\dot{a}}{a} \dot{\delta}_{k}=\left(4 \pi G \rho_{0}-\frac{c_{s}^{2} k^{2}}{a^{2}}\right) \delta_{k} \tag{8}
\end{equation*}
$$

if no expansion $(a=1, \dot{a}=0)$, recover Jeans solution
with expansion:

- Hubble "drag" $-2 H \dot{\delta}$ opposes perturbation growth
- still critical Jeans scale: $k_{J}=\sqrt{4 \pi G \rho_{0} a^{2} / c_{s}^{2}}$
expect oscillations on small scales, collapse on larger

Unstable Modes: Matter-Dominated U

Consider large scales $\gg \lambda_{J}$

$$
\begin{equation*}
\ddot{\delta}_{k}+2 \stackrel{\dot{a}}{a} \dot{\delta}_{k} \approx 4 \pi G \rho_{0} \delta_{k} \tag{9}
\end{equation*}
$$

in Matter-dominated $\mathrm{U}: 8 \pi G \rho / 3=H^{2}=(2 / 3 t)^{-2}=4 / 9 t^{2}$, so

$$
\begin{equation*}
\ddot{\delta}_{k}+\frac{4}{3 t} \dot{\delta}_{k}-\frac{2}{3 t^{2}} \delta_{k}=0 \tag{10}
\end{equation*}
$$

eq homogeneous in $t \rightarrow$ try power law solution
trial $\delta \sim t^{s}$ works if $s(s-1)+4 s / 3-2 / 3=0$
solutions $s=2 / 3,-1$: growing and decaying modes

$$
\begin{equation*}
\delta_{+}(t)=\delta_{+}\left(t_{i}\right)\left(\frac{t}{t_{i}}\right)^{2 / 3} ; \quad \delta_{-}(t)=\delta_{-}\left(t_{i}\right)\left(\frac{t}{t_{i}}\right)^{-1} \tag{11}
\end{equation*}
$$

- growing mode dominates
- Hubble friction: exponential collapse softened to power law \star Note: solutions indep of k Q: why a big deal?

Linear Growth Factor

each unstable Fourier mode grows with time as

$$
\begin{equation*}
\delta_{k}(t) \propto D(t) \sim t^{2 / 3} \sim a \sim \eta_{\text {conform }}^{2} \tag{12}
\end{equation*}
$$

indep of wavenumber k

- in k-space, all unstable modes grow by same factor and transform to real space, find
- one large scales (but still subhorizon)

$$
\begin{equation*}
\delta\left(t, \vec{x}_{\text {large }}\right) \simeq D(t) \delta\left(t_{i}, \vec{x}_{\text {large }}\right) \tag{13}
\end{equation*}
$$

\Rightarrow entire density contrast pattern grows with same amplification:
\Rightarrow linear grow factor $D(t)$ applies to whole field and thus, on subhorizon scales power spectrum evolves as
$\infty_{\infty} P(k, t)=\left|\delta(k, t)^{2}\right|=D(t)^{2} P_{i}(k) \sim a^{2}(t) P_{i}(k)$
$\Rightarrow \mathrm{RMS}$ fluctuation $\sigma(R, t) \sim \Delta(k=1 / R) \sim a(t) \sigma_{i}(R) \sim \frac{\sigma_{i}(R)}{1+z}$

Applications to CMB: Naïve Inferences

before decoupling: pressure dominated by photons
\rightarrow expect oscillations - and see them!
after decoupling: growing mode

CMB anisotropies are a snapshot
of perturbations at last scattering
can quantify level: $(\delta T / T)_{\text {Is }} \sim 10^{-5}$ at $z_{\text {Is }} \sim 1100$
But matter has $\rho \propto a^{-3} \propto T^{3}$, so $\delta \rho / \rho=3 \delta T / T$
$\rightarrow \delta(z=1100) \sim 3 \times 10^{-5}$ at last scattering
So today, expect fluctuations of size

$$
\begin{equation*}
\delta_{0}=\frac{D_{0}}{D_{\mathrm{ls}}} \delta_{\mathrm{ls}}=\frac{a_{0}}{a_{\mathrm{ls}}} \delta_{\mathrm{ls}}=\left(1+z_{\mathrm{ls}}\right) \delta_{\mathrm{ls}} \sim 0.05 \ll 1 \tag{14}
\end{equation*}
$$

- Should still be very small-no nonlinear structures, such as us!

Q: obviously wrong-egregiously naïve! What's the flaw?
What's the fix?

Director's Cut Extras

Linear Theory II: Sketch of Relativistic Treatment

see, e.g., Dodelson text, Liddle \& Lyth Ch. 14

Recall limits of Newtonian treatment:

- only appropriate for scales $\lambda \ll d_{H}$: sub-horizon
- relativistic effects like time dilation absent or ad hoc

General Relativistic approach to cosmological perturbations

- as in Newtonian analysis, perturb density, velocity
\rightarrow this perturbs stress-energy
schematically " $\delta T \approx \delta \rho+\delta P=\delta \rho+c_{s}^{2} \delta \rho$ "
- must therefore add small perturbations to metric:
$g_{\mu \nu}=g_{\mu \nu}^{\mathrm{FRW}}+h_{\mu \nu}$
- these are related by Einstein's Equation
$\stackrel{\rightharpoonup}{\square}$
$G_{\mu \nu} \approx " \partial \partial g^{\mathrm{FRW}}+\partial \partial h^{\prime \prime}=8 \pi G_{N} T_{\mu \nu} \approx " 8 \pi G_{N}(\rho+\delta \rho) "$

Metric Perturbations

Perturbations to metric tensor can be classified as:

- scalar - density perturbations couple to these these are most important
- vector - velocity perturbations couple to these these are least important (perturbations decay with time)
- tensor - source of gravity waves inflationary quantum perturbation excite these modes!
focus on scalar perturbations, which modify FRW metric thusly:

$$
\begin{equation*}
\left(d s^{2}\right)_{\text {perturbed }}=a(\eta)^{2}\left[(1+2 \Psi) d \eta^{2}-(1-2 \Phi) \delta_{i j} d x^{i} d x^{j}\right] \tag{15}
\end{equation*}
$$

Coordinate freedom \leftrightarrow "gauge" choice \leftrightarrow spacetime "slicing"
$\stackrel{\rightharpoonup}{N} \Rightarrow$ here: "conformal Newtonian gauge":

- $\Psi(\vec{x}, t), \Phi(\vec{x}, t)$ Schwarzchild-like forms if $a=1, \dot{a}=0$

Substitute perturbed metric into Einstein, keep only linear terms in Φ and Ψ, e.g., neglect Φ^{2}
use conformal time
and go to k-space

- $\nabla_{\mu} T^{\mu 0} \rightarrow$ "continuity"

$$
\begin{equation*}
\frac{d \delta}{d \eta}+i k v+3 \frac{d \Phi}{d \eta}=0 \tag{16}
\end{equation*}
$$

- $\nabla_{\mu} T^{\mu i} \rightarrow$ "Euler"

$$
\begin{equation*}
\frac{d v}{d \eta}+\frac{d a / d \eta}{a} v+i k \Psi=\text { pressure sources } \tag{17}
\end{equation*}
$$

- $G_{\mu \nu}=8 \pi G_{N} T_{\mu \nu} \rightarrow$ "Poisson"

$$
\begin{align*}
k^{2} \Phi & =-4 \pi G a^{2} \rho \delta \tag{18}\\
k^{2}(\Psi-\Phi) & =-8 \pi G a^{2} "\left\langle P_{x}-P_{y}\right\rangle " \tag{19}
\end{align*}
$$

expect anisotropic stress small: $\left\langle P_{x}-P_{y}\right\rangle \ll \rho \delta \rightarrow \Psi \approx \Phi$

Recall: conformal time η gives particle horizon

On sub-horizon scales $\lambda \sim 1 / k \ll \eta$:
relativistic treatment gives back Newtonian result in fact: justifies our Newtonian treatment

On super-horizon scales $\lambda \sim 1 / k \gg \eta$:
relativistic treatment still valid
\rightarrow will use this to follow inflationary perturbations through horizon crossing

Non-relativistic Cosmic Kinematics

gas particles have random thermal speeds, momenta how are these affected by cosmic expansion?

Classical picture:
consider non-rel free* particle moving w.r.t. comoving frame $\vec{\ell}_{\mathrm{com}}(t) \neq$ const, and so $\vec{\ell}_{\text {phys }}=a(t) \ell_{\mathrm{com}}(t)$:

$$
\begin{aligned}
& \vec{v}=d \vec{\ell}_{\text {phys }} / d t=\dot{a}(t) \ell_{\mathrm{com}}(t)+a(t) \dot{\ell}_{\mathrm{com}}(t) \\
& =H \vec{\ell}_{\text {phys }}+\quad \vec{v} \text { pec } \\
& =\text { Hubble flow }+ \text { peculiar velocity }
\end{aligned}
$$

Note that peculiar velocity v is always w.r.t. the comoving frame-i.e., the particle speed compared to that of a stationary fundamental observer at the same point
*i.e., except for gravitation
consider a comoving observer at the origin, $\vec{x}=0$ in time δt, a particle moves w.r.t. comov frame physical dist $\delta \vec{x}_{\text {phys }}=\vec{v}_{\text {pec }} \delta t$
but due to Hubble flow, a comoving (fundamental) observer at $\delta \vec{x}_{\text {phys }}$ is moving away from the origin at speed $\vec{v}_{\text {com }}=H \delta \vec{x}_{\text {phys }}$
thus the new speed of the particle relative to its new comoving neighbor is given by the relative velocity
$\vec{v}_{\text {pec }}^{\prime}=\vec{v}_{\text {pec }}-\vec{v}_{\text {com }}$
(where we used the non-rel velocity addition law) and so the peculiar velocity changes by

$$
\begin{equation*}
\delta \vec{v}_{\mathrm{pec}}=-H \delta \vec{x}_{\text {phys }}=-\frac{\dot{a}}{a} \vec{v}_{\mathrm{pec}} \delta t=-\frac{\delta a}{a} \vec{v}_{\mathrm{pec}} \tag{20}
\end{equation*}
$$

光
Q: physical implications?
$\delta v_{\text {pec }} / v_{\text {pec }}=-\delta a / a \Rightarrow$ physical peculiar velocity $v_{\text {pec }} \propto 1 / a$:

- $m v_{\text {non-rel }}=p_{\text {non-rel }}=p_{0} / a$
- comoving peculiar velocity $d \ell_{\text {com }} / d t \propto 1 / a^{2}$ slowdown w.r.t. comoving frame: velocity "decays" not a "cosmic drag" but rather kinematic effect due to struggle to overtake receding of cosmic milestones

Quantum picture:

recall for photons, $p_{\text {rel }}=h / \lambda \sim 1 / a$ (de Broglie) but de Broglie holds for matter too: $p_{\text {non-rel }}=h / \lambda_{d e B} \sim 1 / a$
\Rightarrow again, $p_{\text {non-rel }}=p_{0} / a$
true in general, now apply to thermal gas
non-relativistic gas: Maxwell-Boltzmann

$$
n=\frac{g}{(2 \pi \hbar)^{3}} e^{-\left(m c^{2}-\mu\right) / k T} a^{-3} \int d^{3} p_{0} e^{-p_{0}^{2} / 2 m k a^{2} T}
$$

if occupation number constant (particle conservation) need $a^{2} T(a)=T_{0}=$ const and thus $T_{\text {non-rel }} \propto 1 / a^{2}$:
$T_{\text {non-rel,decoupled }}=\left(\frac{a_{\mathrm{dec}}}{a}\right)^{2} T_{\text {decoupling }}=\left(\frac{1+z}{1+z_{\mathrm{dec}}}\right)^{2} T_{\text {decoupling }}$
evaluate for $z_{\mathrm{dec}}=z_{\mathrm{ri}}$: estimate

$$
\begin{equation*}
T_{\text {gas }, \text { today }} \sim \frac{T_{\gamma, 0}}{1+z_{\text {dec,gas }}} \sim 6 \times 10^{-3} \mathrm{~K} \tag{21}
\end{equation*}
$$

Q: do the experiment...?
Q: what went wrong?

Inhomogeneities: The Spice of Life

So far: we have assumed perfect homogeneity!
If universe strictly homogeneous
indeed would cool to $T_{\text {gas }} \ll T_{0}$
But happily, U. definitely inhomogeneous on small scales!
gravity amplifies density contrast Q: why?
"the rich get richer, the poor get poorer"
this allows for motion, condensation of matter
halo formation, mergers, shocks, star formation, quasars, ...
these overdense structures release energy
lead to diversity of cosmic matter and radiation today!
But how did we get the inhomogeneities?
${ }^{\bullet}$ And what set the primordial composition of baryons?
\rightarrow events in the very early Universe...

Momentum Redshifting: Rigorously

the preceding heuristic arguments give the right result, but to obtain this rigorously requires General Relativity (if you haven't had GR yet, never mind)
in GR: a free particle's motion is a geodesic
so 4-momentum $p^{\mu}=m d x^{\mu} / d s=m(\gamma, \gamma \vec{v})=(E, \vec{p})$ changes as

$$
\begin{equation*}
p^{\alpha} \nabla_{\alpha} p^{\mu}=p^{\alpha} \partial_{\alpha} p^{\mu}+\Gamma_{\alpha \beta}^{\mu} p^{\alpha} p^{\beta}=0 \tag{22}
\end{equation*}
$$

and we see that the change in u is due to the connection term「, i.e., to curvature
\rightarrow curvature tells matter how to move
No note: homogeneity hugely simplifies: $p^{\mu}=p^{\mu}(t)$ so $\partial_{\mu} p=0$ except for $\partial_{t} p=\dot{p}$
consider the $\mu=i \in(x, y, z)$ component of the geodesic eq

$$
\begin{align*}
p^{\alpha} \partial_{\alpha} p^{i}+\Gamma_{\alpha \beta}^{i} p^{\alpha} p^{\beta} & =E \dot{p}+\Gamma_{\alpha \beta}^{i} p^{\alpha} p^{\beta} \tag{23}\\
& =0 \tag{24}
\end{align*}
$$

note that in FRW, if we write $d s^{2}=d t^{2}-h_{i j} d x^{i} d x^{j}$ where $h_{i j}$ is the spatial metric, then nonzero $\Gamma_{\alpha \beta}^{i}$ are

$$
\begin{equation*}
\Gamma_{0 j}^{i}=\frac{\dot{a}}{a} \delta_{j}^{i} \tag{25}
\end{equation*}
$$

where δ_{j}^{i} is the Kronecker delta (try it!)
We then have

$$
\begin{equation*}
E \dot{p^{i}}+\frac{\dot{a}}{a} E p^{i}=0 \tag{26}
\end{equation*}
$$

and thus

$$
\begin{align*}
d \vec{p} / d t & =-\frac{\dot{a}}{a} \vec{p} \tag{27}\\
|\vec{p}| & \propto \frac{1}{a} \tag{28}
\end{align*}
$$

Note that this result is completely general, i.e., works for all relativistic p, so

- in non-rel limit, $v \propto 1 / a$: vel redshifts, and free particles eventually come to rest wrt the comoving background
- in ultra-rel limit, $v=p / E \approx c$, doesn't redshift, but since $E \approx p, E \propto 1 / a$: energy redshifts
note classical derivation: didn't need Planck/de Broglie relation $p \propto 1 / \lambda$ to show this (though that still works too)

