
Astro 596/496 PC

Lecture 34

April 16, 2010

Announcements:

• PF6 – last preflight! – due Monday noon

• ICES available online – please do it!

Last time: began theory of structure formation

→ evolution of perturbations to a FLRW cosmology

Full technology: general relativistic perturbation theory

... and Boltzmann equation for evolution of

phase-space distribution function f for each cosmic species

Mostly good-enough technology: Newtonian cosmology
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Summary of Jeans Analysis in Static Background

Sir James Jeans: Newtonian evolution of density perturbations

of non-expanding, static homogeneous background fluid

∂2
t δ − c2s∇2δ = 4πGρ0δ (1)

• wavelike solutions, e.g., δ~k ∝ ei(~k·~x−ωt) ≡ D(t) δ0(~x)

• dispersion relation ω2 = c2sk2 − 4πGρ0 ≈ c2sk2 − 1/τ2
frefall

• critical scale: Jeans wavenumber kJ =
√

4πGρ0/cs,

Jeans wavelength λJ = 2π/kJ = cs

√

π/Gρ0 ≈ csτfreefall

• on large scales k < kJ: ω2 < 0 → D(t) = e+ωt

density contrast grows exponentially for large-scale modes!

⋆ Jeans instability or gravitational instability

Q: physical explanation? why only large-scale modes unstable?

Q: what if δ0 < 0?

Q: in expanding U, should grav instability be stronger or weaker?
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Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity
→ okay for linear analysis inside Hubble length
apply to matter-dominated U.

Coordinate choices

Eulerian time-indep grid ~x fixed in physical space
expansion moves unperturbed fluid elts past as ~x(t) = a(t)~r

Lagrangian coords ~r time-indep but expand in physical space
following fluid element: locally comoving

⇒ spatial gradients: ∇~x = (1/a)∇~r

Unperturbed (zeroth order) eqs,
using ρ0 = ρ0(t), ~v0 = ȧ

a~x = ȧ~r

∂tρ0 + ∇ · (ρ0~v) = ρ̇0 + ρ0
ȧ

a
∇~x · ~x = 0 (2)

ρ̇0 + 3
ȧ

a
ρ0 = 0 ⇒ ρ0 ∝ a−3 (3)
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Poisson:

∇2Φ0 =
1

x2
∂x(x∂xΦ0) = 4πGρ0 ⇒ Φ0 =

2πGρ0

3
x2 =

2πGρ0

3
a2r2

∇~xΦ0 =
4πGρ0

3
~x ∇~rΦ0 =

4πGρ0

3
a~r

Euler

d(ȧ~r)/dt = ä~r =
ä

a
~x = −4πGρ0

3
~x (4)

ä

a
= −4πGρ0

3
(5)

Fried accel; with continuity → Friedmann

Zeroth order fluid equations → usual expanding U

in non-rel approximation
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Now add perturbations ρ1 = ρ0δ, ~v1, Φ1

simplest to use comoving (Lagrangian) coords

follow observers in unperturbed Hubble flow

perturbation fluid elements ~x(t) = a(t)~r(t)

peculiar fluid velocity ~v1(t) = a(t)~u(t)

plug in, keep only terms linear in perturbations (∇ = ∇~r)

→ perturbation evolution to first (leading, linear) order

~̇u + 2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(6)

δ̇ = −∇ · ~u (7)

Note: if no pressure, density perturbations

still have u̇ = −2Hu → u ∝ 1/a2, v1 ∝ 1/a

→ pressureless fluid’s peculiar vel redshifts same as free particle
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Linearized Density Evolution

now look for plane-wave solutions ↔ write as Fourier modes

e.g., δ(~r) ∼ e−i~k·~r, with ~k comoving wavenumber

δ̈k + 2
ȧ

a
δ̇k =

(

4πGρ0 − c2sk2

a2

)

δk (8)

if no expansion (a = 1, ȧ = 0), recover Jeans solution

with expansion:

• Hubble “drag” −2Hδ̇ opposes perturbation growth

• still critical Jeans scale: kJ =
√

4πGρ0a2/c2s
expect oscillations on small scales, collapse on larger
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Unstable Modes: Matter-Dominated U

Consider large scales ≫ λJ

δ̈k + 2
ȧ

a
δ̇k ≈ 4πGρ0δk (9)

in Matter-dominated U: 8πGρ/3 = H2 = (2/3t)−2 = 4/9t2, so

δ̈k +
4

3t
δ̇k − 2

3t2
δk = 0 (10)

eq homogeneous in t → try power law solution

trial δ ∼ ts works if s(s − 1) + 4s/3 − 2/3 = 0

solutions s = 2/3,−1: growing and decaying modes

δ+(t) = δ+(ti)

(

t

ti

)2/3

; δ−(t) = δ−(ti)

(

t

ti

)−1

(11)

• growing mode dominates

• Hubble friction: exponential collapse softened to power law

⋆ Note: solutions indep of k Q: why a big deal?
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Linear Growth Factor

each unstable Fourier mode grows with time as

δk(t) ∝ D(t) ∼ t2/3 ∼ a ∼ η2
conform (12)

indep of wavenumber k

• in k-space, all unstable modes grow by same factor

and transform to real space, find

• one large scales (but still subhorizon)

δ(t, ~xlarge) ≃ D(t)δ(ti, ~xlarge) (13)

⇒ entire density contrast pattern grows

with same amplification:

⇒ linear grow factor D(t) applies to whole field

and thus, on subhorizon scales power spectrum evolves as

P(k, t) = |δ(k, t)2| = D(t)2Pi(k) ∼ a2(t) Pi(k)

⇒ RMS fluctuation σ(R, t) ∼ ∆(k = 1/R) ∼ a(t) σi(R) ∼ σi(R)

1 + z
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Applications to CMB: Näıve Inferences

before decoupling: pressure dominated by photons

→ expect oscillations – and see them!

after decoupling: growing mode

CMB anisotropies are a snapshot

of perturbations at last scattering

can quantify level: (δT/T)ls ∼ 10−5 at zls ∼ 1100

But matter has ρ ∝ a−3 ∝ T3, so δρ/ρ = 3δT/T

→ δ(z = 1100) ∼ 3 × 10−5 at last scattering

So today, expect fluctuations of size

δ0 =
D0

Dls
δls =

a0

als
δls = (1 + zls)δls ∼ 0.05 ≪ 1 (14)

Should still be very small–no nonlinear structures, such as us!

Q: obviously wrong–egregiously näıve! What’s the flaw?

What’s the fix?
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Director’s Cut Extras

1
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Linear Theory II: Sketch of Relativistic Treatment

see, e.g., Dodelson text, Liddle & Lyth Ch. 14

Recall limits of Newtonian treatment:

• only appropriate for scales λ ≪ dH: sub-horizon

• relativistic effects like time dilation absent or ad hoc

General Relativistic approach to cosmological perturbations

• as in Newtonian analysis, perturb density, velocity

→ this perturbs stress-energy

schematically “δT ≈ δρ + δP = δρ + c2sδρ”

• must therefore add small perturbations to metric:

gµν = gFRW
µν + hµν

• these are related by Einstein’s Equation

Gµν ≈ “∂∂gFRW + ∂∂h” = 8πGNTµν ≈ “8πGN(ρ + δρ)”
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Metric Perturbations

Perturbations to metric tensor can be classified as:

• scalar – density perturbations couple to these

these are most important

• vector – velocity perturbations couple to these

these are least important (perturbations decay with time)

• tensor – source of gravity waves

inflationary quantum perturbation excite these modes!

focus on scalar perturbations, which modify FRW metric thusly:

(ds2)perturbed = a(η)2
[

(1 + 2 Ψ )dη2 − (1 − 2 Φ )δijdxidxj
]

(15)

Coordinate freedom ↔ “gauge” choice ↔ spacetime “slicing”

⇒ here: “conformal Newtonian gauge”:

• Ψ(~x, t),Φ(~x, t) Schwarzchild-like forms if a = 1, ȧ = 0
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Substitute perturbed metric into Einstein, keep only linear terms

in Φ and Ψ, e.g., neglect Φ2

use conformal time

and go to k-space

• ∇µTµ0 → “continuity”

dδ

dη
+ ikv + 3

dΦ

dη
= 0 (16)

• ∇µTµi → “Euler”

dv

dη
+

da/dη

a
v + ikΨ = pressure sources (17)

• Gµν = 8πGNTµν → “Poisson”

k2Φ = −4πGa2ρδ (18)

k2(Ψ − Φ) = −8πGa2“〈Px − Py〉” (19)

expect anisotropic stress small: 〈Px − Py〉 ≪ ρδ → Ψ ≈ Φ
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Recall: conformal time η gives particle horizon

On sub-horizon scales λ ∼ 1/k ≪ η:

relativistic treatment gives back Newtonian result

in fact: justifies our Newtonian treatment

On super-horizon scales λ ∼ 1/k ≫ η:

relativistic treatment still valid

→ will use this to follow inflationary perturbations

through horizon crossing
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Non-relativistic Cosmic Kinematics

gas particles have random thermal speeds, momenta

how are these affected by cosmic expansion?

Classical picture:

consider non-rel free∗ particle moving w.r.t. comoving frame
~ℓcom(t) 6= const, and so ~ℓphys = a(t)ℓcom(t):

~v = d~ℓphys/dt = ȧ(t)ℓcom(t) + a(t)ℓ̇com(t)

= H~ℓphys + ~vpec

= Hubble flow + peculiar velocity

Note that peculiar velocity v is always w.r.t. the comoving

frame–i.e., the particle speed compared to that of a stationary

fundamental observer at the same point

∗i.e., except for gravitation
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consider a comoving observer at the origin, ~x = 0

in time δt, a particle moves w.r.t. comov frame

physical dist δ~xphys = ~vpecδt

but due to Hubble flow, a comoving (fundamental) observer at

δ~xphys is moving away from the origin at speed ~vcom = Hδ~xphys

thus the new speed of the particle relative to its new comoving

neighbor is given by the relative velocity

~v′pec = ~vpec − ~vcom

(where we used the non-rel velocity addition law)

and so the peculiar velocity changes by

δ~vpec = −Hδ~xphys = −ȧ

a
~vpecδt = −δa

a
~vpec (20)

Q: physical implications?
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δvpec/vpec = −δa/a ⇒ physical peculiar velocity vpec ∝ 1/a:

• mvnon−rel = pnon−rel = p0/a

• comoving peculiar velocity dℓcom/dt ∝ 1/a2

slowdown w.r.t. comoving frame: velocity “decays”

not a “cosmic drag” but rather kinematic effect

due to struggle to overtake receding of cosmic milestones

Quantum picture:

recall for photons, prel = h/λ ∼ 1/a (de Broglie)

but de Broglie holds for matter too: pnon−rel = h/λdeB ∼ 1/a

⇒ again, pnon−rel = p0/a

true in general, now apply to thermal gas
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non-relativistic gas: Maxwell-Boltzmann

n =
g

(2πh̄)3
e−(mc2−µ)/kTa−3

∫

d3p0 e−p2
0/2mka2T

if occupation number constant (particle conservation)

need a2 T(a) = T0 = const and thus Tnon−rel ∝ 1/a2:

Tnon−rel,decoupled =

(

adec

a

)2
Tdecoupling =

(

1 + z

1 + zdec

)2

Tdecoupling

evaluate for zdec = zri: estimate

Tgas,today ∼ Tγ,0

1 + zdec,gas
∼ 6 × 10−3 K (21)

Q: do the experiment...?

Q: what went wrong?
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Inhomogeneities: The Spice of Life

So far: we have assumed perfect homogeneity!

If universe strictly homogeneous

indeed would cool to Tgas ≪ T0

But happily, U. definitely inhomogeneous on small scales!

gravity amplifies density contrast Q: why?

“the rich get richer, the poor get poorer”

this allows for motion, condensation of matter

halo formation, mergers, shocks, star formation, quasars, ...

these overdense structures release energy

lead to diversity of cosmic matter and radiation today!

But how did we get the inhomogeneities?

And what set the primordial composition of baryons?

→ events in the very early Universe...
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Momentum Redshifting: Rigorously

the preceding heuristic arguments give the right result, but to

obtain this rigorously requires General Relativity (if you haven’t

had GR yet, never mind)

in GR: a free particle’s motion is a geodesic

so 4-momentum pµ = mdxµ/ds = m(γ, γ~v) = (E, ~p) changes as

pα∇αpµ = pα∂αpµ + Γ
µ
αβpαpβ = 0 (22)

and we see that the change in u is due to the connection term

Γ, i.e., to curvature

→ curvature tells matter how to move

note: homogeneity hugely simplifies: pµ = pµ(t)

so ∂µp = 0 except for ∂tp = ṗ

2
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consider the µ = i ∈ (x, y, z) component of the geodesic eq

pα∂αpi + Γi
αβpαpβ = Eṗ + Γi

αβpαpβ (23)

= 0 (24)

note that in FRW, if we write ds2 = dt2 − hijdxidxj

where hij is the spatial metric, then nonzero Γi
αβ are

Γi
0j =

ȧ

a
δi
j (25)

where δi
j is the Kronecker delta (try it!)

We then have

Eṗi +
ȧ

a
Epi = 0 (26)

and thus

d~p/dt = −ȧ

a
~p (27)

|~p| ∝ 1

a
(28)
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Note that this result is completely general, i.e., works for all

relativistic p, so

• in non-rel limit, v ∝ 1/a: vel redshifts, and free particles

eventually come to rest wrt the comoving background

• in ultra-rel limit, v = p/E ≈ c, doesn’t redshift, but

since E ≈ p, E ∝ 1/a: energy redshifts

note classical derivation: didn’t need Planck/de Broglie relation

p ∝ 1/λ to show this (though that still works too)
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