Astro 596/496 PC Lecture 35 April 19, 2010

Announcements:

- PF6 was due at noon-congrats! *Q: adiabatic? gaussian?*
- PS7 out, due in class *Wednesday* next week
- ICES available online please do it!

Last time: Newtonian perturbation theory in expanding U again find characteristic Jeans length $\lambda_J \sim c_s/\sqrt{G\rho}$ but in expanding case: $\lambda_J \simeq ac_s t$ comoving "sound horizon" when matter-dom, density contrast δ of unstable modes grow as

$$\delta_k(t) \equiv D(t)\delta_k(t_i) = \left(\frac{t}{t_i}\right)^{2/3} \delta_k(t_i) = \frac{a(t)}{a(t_i)} \delta_k(t_i) \tag{1}$$

→ RMS fluctuation at scale k or in sphere R grow as $\sigma(R) \sim \Delta(k = 1/R) \propto D(t) \propto a(t)$ Q: at which δ should perturbation analysis break down?

Applications to CMB: Naïve Inferences

before decoupling: pressure dominated by photons \rightarrow expect oscillations – and see them! after decoupling: growing mode

CMB anisotropies are a snapshot of perturbations at last scattering can quantify level: $(\delta T/T)_{\rm ls} \sim 10^{-5}$ at $z_{\rm ls} \sim 1100$

But matter has $\rho \propto a^{-3} \propto T^3$, so $\delta \rho / \rho = 3\delta T / T$ $\rightarrow \delta_{\text{init}} = \delta(z = 1100) \sim 3 \times 10^{-5}$ at last scattering So today, expect fluctuations of size

$$\delta_0 = \frac{D_0}{D_{|\mathsf{S}}} \delta_{|\mathsf{S}} = \frac{a_0}{a_{|\mathsf{S}}} \delta_{|\mathsf{S}} = (1 + z_{|\mathsf{S}}) \delta_{|\mathsf{S}} \sim 0.03 \ll 1$$
(2)

 \sim

Should still be very small-no nonlinear structures, such as us! *Q: obviously wrong-egregiously naïve! What's the flaw? What's the fix?*

Cosmic Diversity: Evolution of Multiple Components

Thus far: implicitly assumed a baryons-only universe: not ours!

Cosmic "fluid" contains many different species with different densities, interactions baryons, photons, neutrinos, dark matter, dark energy

Each component i has its own equations of motion, e.g.:

$$\ddot{\delta}_i + 2H\dot{\delta}_i = -\frac{c_{s,i}^2 k^2}{a^2} \delta_i + 4\pi G \rho_0 \sum_j \Omega_j \delta_j \tag{3}$$

species interact via pressure, gravity: evolution eqs *coupled*p gravity from dominant Ω drives the other components
∞ > each species' (pressure) response depends on microphysics of its interactions, encoded in sound speed c_{s,i}

Matter Instability in the Radiation Era

(dark) matter perturbation δ_m during radiation domination

- pick subhorizon scale: growth possible
- focus on $k < k_J$: Jeans unstable (can ignore pressure) and high-k modes just oscillate anyway
- treat radiation perturbations as smooth: $\delta_{rad} \approx 0$ $P_r = \rho_r/3$: huge, fast $c_s \sim c$ any perturbations will be oscillatory anyway
- dark matter: weak interactions \rightarrow pressureless \rightarrow $c_s = 0!$

Evolution simple - to rough approximation, for these k:

$$\ddot{\delta}_m + 2\frac{\dot{a}}{a}\dot{\delta}_m \stackrel{\text{rad}-\text{dom}}{=} \ddot{\delta}_m + \frac{1}{t}\dot{\delta}_m \approx 0 \tag{4}$$

Simple solutions: growing mode plus decaying mode

$$\delta_m(t) = \frac{D(t)}{\delta_m(t_i)} = \left(\frac{D_1 \log t + \frac{D_2}{t}}{t}\right) \delta_m(t_i)$$
(5)

Q: implications? what about baryons?

4

Found $D(t) \sim D_1 \log t$: "growing" mode hardly grows!

 \star dark matter perturbations *frozen* during rad dom dark matter growth quenched by

- \rightarrow non-growth of radiation perturbations
- \rightarrow extra expansion due to radiation

* dark matter perturbation growth stalled

until end of radiation era: matter-radiation equality

i.e., $\rho_{\rm matter} = \rho_{\rm radiation}$ when $z_{\rm eq} \sim 3 \times 10^4$

Q: is before or after BBN? recomb?

 \Rightarrow this marks onset of structure formation

^o Q: how does this update our naive CMB calculation? Hint: then, correct reasoning for $\delta = \delta_b$ only baryons tightly coupled to photons till recombination \rightarrow so dark matter perturbations begin growth earlier

And so: DM has grown more! update earlier estimate and focus on dark matter

$$\delta_{m,0} = \frac{D_{\mathsf{ls}}}{D_{\mathsf{eq}}} \delta_{b,0} \sim \frac{1 + z_{\mathsf{eq}}}{1 + z_{\mathsf{ls}}} \delta_b \sim 30 \times 0.05 \sim 1 \tag{6}$$

DM can grow to nonlinearity today!

- ★ existence of collapsed cosmic structures requires collisionless dark matter!
- * independent argument for large amounts of weakly interacting matter throughout universe!

CMB Anisotropies

Between matter-radiation equality and recombination:

- dark matter perturbations grow form deepening potential wells
- baryons, electrons tightly coupled to photons (plasma) undergo acoustic oscillations
- Q: what is the largest scale which can oscillate?
- Q: for each mode k, what sets oscillation frequency?
- *Q*: at fixed *t*, which scales have oscillated the most? the least?
- *Q:* how is this written on the CMB?

Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

$$\ddot{\delta}_b + 2\frac{\dot{a}}{a}\dot{\delta}_b \simeq 4\pi G\rho\delta_{dm} - \frac{k^2c_s^2}{a^2}\delta_b \sim \frac{\delta_{dm}}{t^2} - \frac{k^2c_s^2}{a^2}\delta_b \tag{7}$$

key comparison: mode scale $\lambda \sim k^{-1}$ vs comoving sound horizon $c_s t/a = d_{s,com}$

for large scales $kc_st/a \ll 1$: baryons follow DM for small scales $kc_st/a \gg 1$: baryons oscillate, as

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{8}$$

(PS 6) where $d\eta = dt/a$ is conformal time

S

for constant c_s , $\delta_b \sim e^{ikc_s\eta}$ sinusoidal at each kphase counts number of cycles $N = kc_s\eta/2\pi = c_s\eta/\lambda$ oscillation frequency: $\omega \sim kc_s \sim c_s/\lambda \propto 1/\lambda$ small $\lambda \rightarrow$ rapid oscillations

Recombination: Snapshot Taken

At recombination, free e^- abundance drops baryons quickly decouple from photons huge drop in pressure $\rightarrow c_s \rightarrow 0$ begin to collapse onto DM potentials photons travel freely (typically) afterwards fluctuation pattern at recomb is "frozen in" δ vs scale records different # of cycles at recomb

$$P(k) = \|\delta_k\|^2 \sim \frac{\sin(2kc_s\eta_{\text{rec}})}{2kc_s\eta_{\text{rec}}} P_{\text{init}}(k)$$
(9)

written onto temperature pattern ("say cheese!")
www: simulation of overdensity evolution thru recombination

Recomb fast \rightarrow CMB is image of last scattering surface

⁶ Q: on small scales, is an overdensity a hot spot or cold spot? why?

Spots Cold and Hot: Small Scales

Define temperature fluctuation $\Theta = \delta T/T$

On Small Scales: Adiabatic

standing waves lead to fluctuations in $\rho_b \sim T^3$, so

$$\Theta \equiv \frac{\delta T}{T} = \frac{1}{3} \left(\frac{\delta \rho}{\rho} \right)_b \tag{10}$$

 \Rightarrow extrema in density \rightarrow extrema in $\Theta \propto \delta_{\gamma}$

- ★ photon T contrast reflects T distribution at source \rightarrow hot is hot and cold is cold
- but both high and low density give large $(\delta T/T)^2$! photon climb out of potential doesn't change $\delta T/T$ much \rightarrow CMB hot spots are high density, cold are low

 $\frac{1}{1}$

Q: what about on large scales?

Very Large Scales: Sachs-Wolfe

beyond horizon: no oscillations, main effects gravitational (GR):

- gravitational redshift: photon climbs out of potential $\delta \Phi < 0$ redshift $\delta \lambda / \lambda = \Phi_0 - \Phi_{ls} = -\delta \Phi$ and since $T \sim 1/\lambda$, $(\delta T/T)_{\text{redshift}} = \delta \Phi$: photons cooled!
- time dilation: takes longer to climb out of overdensity looking at younger, hotter universe $\delta t/t = \delta \Phi$, and since $a \sim t^{2/3}$ and $T \sim 1/a$ then $T \sim t^{-2/3}$, and $(\delta T/T)_{\text{dilation}} = -2/3 \ \delta \Phi$ net effect: Sachs Wolfe

$$\left(\frac{\delta T}{T}\right)_{SW} = \left(\frac{\delta T}{T}\right)_{\text{redshift}} + \left(\frac{\delta T}{T}\right)_{\text{dilation}} = \frac{1}{3}\delta\Phi \qquad (11)$$

***** overdensities are **cold** spots, underdensities **hot**

Note: this regime is what tests inflation Q: what predicted?