Astro 596/496 PC Lecture 36 April 21, 2010

Announcements:

- PS6 out, due in class *Wednesday* next week
- **ICES** available online please do it!

Last time: began CMB anisotropies

- Q: dark matter perturbations before matter-rad eq? after?
- Q: baryonic perturbations before recomb? after?
- *Q: physical origin of CMB* ΔT *on scales* $\gg d_{hor,recomb}$?

dark matter: pressureless

 \rightarrow all k modes unstable if inside Hubble length

but: perturbations grow verry sloooowly during radiation era

 \rightarrow dark matter structures begin formation at matter-radiation equality

baryons: until recomb, tightly coupled to photons

- \rightarrow feel huge photon pressure $P_{\gamma} \propto T^4$
- \rightarrow sound speed $c_s \sim c/\sqrt{3}$ huge!

so all sub-horizon modes stable! just oscillate

 \rightarrow relativistic pressure-mediated (i.e., acoustic) standing waves! oscillation frequency $\nu=c_s/\lambda$:

small-scale modes oscillate many times

largest-scale modes $\lambda = c_s \eta_{hor}$ oscillates only once

Ν

Inflation and Sachs-Wolfe

Inflation: quantum fluctuations \rightarrow density fluctuations

- adiabatic (all species)
- Gaussian
- scale invariant—what does this mean?

In detail: inflation predicts that the dimensionless fluctuations in the *gravitational potential* \leftrightarrow *local curvature* are independent of scale

 \rightarrow this was what we really calculated in Inflation discussion

inflationary scale-invariance is for grav potential:

i.e., Fourier mode contribution $\Delta_{\Phi}^2 \sim k^3 |\Phi_k|^2 \sim const$ indep of $k \rightarrow scale$ invariant: $|\Phi_k|^2 \sim k^{-3}$

ω

need to connect gravitational potential/curvature perturbations to density perturbations

But in Newtonian regime, know how to do this: Poisson relates potential and density: $\nabla^2 \delta \Phi = 4\pi G \delta \rho \rightarrow \Phi_k \sim \delta_k / k^2$ and so $P(k) = |\delta_k|^2 \sim k^4 |\Phi_k|^2$

thus scale invariant gravitational potential gives power spectrum:

$$P(k) \sim k^4 |\Phi_k|^2 \sim k \tag{1}$$

i.e., scale invariance: $P(k) \sim k^n$, $\frac{n_{\text{scale-inv}} = 1}{n_{\text{scale-inv}}}$

4

Angular vs Linear Scales

So far: decomposed fluctuations in (3-D) \vec{k} -space but observe on sky: 2-D angular distribution

Transformation: projection of plane waves at fixed k: see intersection of wave with last scattering shell www: Wayne Hu animation

appears on a range of angular scales but typical angular size is $\theta \sim \lambda/d_{rec,com} \sim (kd_{rec,com})^{-1}$

```
large angles \rightarrow large \lambda (check!)
for large angular scales \theta > \theta_{hor,diam} \sim 1^{\circ}, superhorizon
perturbations not affected by oscillation
for small angular scales, see standing waves
```

peaks at extrema, harmonics of sound horizon
 k are in ratios 1:2:3:...

сл

The CMB Observed

- Observe 2-D sky distribution of $\frac{\Delta T}{T}(\hat{n}) \equiv \Theta(\hat{n})$ in direction \hat{n}
- Decompose into spherical harmonics

$$\Theta(\hat{n}) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi)$$
(2)

with Y_{Im} spherical harmonics Q: why not $\ell = 0, 1$? Q: angular size vs ℓ ? λ vs ℓ ?

Form angular correlation function Q: what is this physically?

$$\langle \Theta(\hat{n}_1)\Theta(\hat{n}_2)\rangle = \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) \langle |a_{\ell m}|^2 \rangle P_{\ell}(\hat{n}_1 \cdot \hat{n}_1)$$
(3)
$$= \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) C_{\ell} P_{\ell}(\cos\vartheta)$$
(4)

σ

where $\cos \vartheta = \hat{n}_1 \cdot \hat{n}_1$

Q: averaged over the m azimuthal modes-why?

all interesting anisotropy information encoded in

$$C_{\ell} = \langle |a_{\ell m}|^2 \rangle \tag{5}$$

isotropy \rightarrow azimuthal dependence averages to zero

Note: analog of Δ^2 (variance per log scale) is $\mathcal{T}^2(\ell) = \ell(\ell+1)C_\ell$: usually what is plotted

Since
$$P_{\ell}(\cos \theta) \sim (\cos \theta)^{\ell} \sim \cos(\ell \theta)$$

at fixed ℓ , angular size $\theta \sim 2\pi/\ell = 180^{\circ}/\ell$
e.g., $\ell = 2$ quadrupole $\rightarrow \theta \sim 90^{\circ}$
and horizon size $\theta \sim 1^{\circ}$ is at $\ell \sim 200$

and since $\theta \sim \lambda/d_{\rm rec} \sim 1/dk$:

¬ multipoles scale as $\ell \sim 1/\theta \sim k \sim 1/\lambda$ low ℓ → big angular, physical scales → small k

CMB Anisotropy Observations: Strategy

- achieve high sensitivity, remove systematics make a "difference experiment" i.e., measure δT directly, don't subtract
- observe as much of the sky as possible (or as needed!) balloons/ground: limited coverage satellites (COBE, WMAP, Planck): all-sky
- remove Galactic contamination: "mask" plane
- recover Θ for observed region
- \bullet decompose into spherical harmonics $Y_{\ell m}$
- construct power spectrum $\ell(\ell+1)C_\ell$
- report results
- ∞
- collect thousands of citations, prominent Prizes

CMB Temperature Anisotropies: Results

COBE (1993)

- first detection of $\delta T/T \neq 0$
- receiver horn angular opening $\sim 8^{\circ}$ \rightarrow only sensitive to large angular scales
 - i.e., superhorizon size
- found $(\delta T/T)_{\rm rms} \sim 10^{-5}$
- power $\ell(\ell+1)C_\ell$ flat \rightarrow implies $P(k) \sim k!$
 - n = 1 spectrum: scale invariant!

Interregnum (late 90's, early 00's)

- ground-based, balloons confirmed anisotropy
- acoustic peaks discovered

Q

strong indication of first peak

WMAP (2003-)

- first all-sky survey of small angular scales
- n = 1 confirmed, indication of small tilt $n 1 \neq 0$? consistent with inflation! and non-trivially so!
- acoustic peaks mapped: good measurement of 1st, 2nd detection of third
- first peak: $\ell \sim 200$ horizon at recomb!
- power dropoff seen at large ℓ
 - \rightarrow nonzero thickness of last scattering

due to photon diffusion, non-instantaneous decoupling