Astro 596/496 PC
 Lecture 36
 April 21, 2010

Announcements:

- PS6 out, due in class Wednesday next week
- ICES available online - please do it!

Last time: began CMB anisotropies
Q: dark matter perturbations before matter-rad eq? after?
Q: baryonic perturbations before recomb? after?
Q: physical origin of $C M B \Delta T$ on scales $\gg d_{\mathrm{hor}, \text { recomb }}$?
dark matter: pressureless
\rightarrow all k modes unstable if inside Hubble length
but: perturbations grow verry sloooowly during radiation era
\rightarrow dark matter structures begin formation at matter-radiation equality
baryons: until recomb, tightly coupled to photons
\rightarrow feel huge photon pressure $P_{\gamma} \propto T^{4}$
\rightarrow sound speed $c_{s} \sim c / \sqrt{3}$ huge!
so all sub-horizon modes stable! just oscillate
\rightarrow relativistic pressure-mediated (i.e., acoustic) standing waves!
oscillation frequency $\nu=c_{s} / \lambda$:
small-scale modes oscillate many times

Inflation and Sachs-Wolfe

Inflation: quantum fluctuations \rightarrow density fluctuations

- adiabatic (all species)
- Gaussian
- scale invariant-what does this mean?

In detail: inflation predicts that the dimensionless
fluctuations in the gravitational potential \leftrightarrow local curvature are independent of scale
\rightarrow this was what we really calculated in Inflation discussion
inflationary scale-invariance is for grav potential:
i.e., Fourier mode contribution $\Delta_{\Phi}^{2} \sim k^{3}\left|\Phi_{k}\right|^{2} \sim$ const indep of k
ω
\rightarrow scale invariant: $\left|\Phi_{k}\right|^{2} \sim k^{-3}$
need to connect gravitational potential/curvature perturbations to density perturbations

But in Newtonian regime, know how to do this:
Poisson relates potential and density:
$\nabla^{2} \delta \Phi=4 \pi G \delta \rho \rightarrow \Phi_{k} \sim \delta_{k} / k^{2}$
and so $P(k)=\left|\delta_{k}\right|^{2} \sim k^{4}\left|\Phi_{k}\right|^{2}$
thus scale invariant gravitational potential gives power spectrum:

$$
\begin{equation*}
P(k) \sim k^{4}\left|\Phi_{k}\right|^{2} \sim k \tag{1}
\end{equation*}
$$

i.e., scale invariance: $P(k) \sim k^{n}, n_{\text {scale-inv }}=1$

Angular vs Linear Scales

So far: decomposed fluctuations in (3-D) \vec{k}-space but observe on sky: 2-D angular distribution

Transformation: projection of plane waves at fixed k : see intersection of wave with last scattering shell www: Wayne Hu animation
appears on a range of angular scales
but typical angular size is $\theta \sim \lambda / d_{\text {rec,com }}^{\sim}\left(k d_{\text {rec }, \text { com }}\right)^{-1}$
large angles \rightarrow large λ (check!)
for large angular scales $\theta>\theta_{\text {hor,diam }} \sim 1^{\circ}$, superhorizon perturbations not affected by oscillation
for small angular scales, see standing waves

- peaks at extrema, harmonics of sound horizon k are in ratios 1:2:3:...

The CMB Observed

- Observe 2-D sky distribution of $\frac{\Delta T}{T}(\widehat{n}) \equiv \Theta(\widehat{n})$ in direction \widehat{n}
- Decompose into spherical harmonics

$$
\begin{equation*}
\Theta(\hat{n})=\sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi) \tag{2}
\end{equation*}
$$

with $Y_{\text {Im }}$ spherical harmonics Q : why not $\ell=0,1$?
Q : angular size vs ℓ ? λ vs ℓ ?
Form angular correlation function Q : what is this physically?

$$
\begin{align*}
\left\langle\Theta\left(\widehat{n}_{1}\right) \Theta\left(\hat{n}_{2}\right)\right\rangle & \left.=\left.\frac{1}{4 \pi} \sum_{\ell=2}^{\infty}(2 \ell+1)\langle | a_{\ell m}\right|^{2}\right\rangle P_{\ell}\left(\widehat{n}_{1} \cdot \widehat{n}_{1}\right) \tag{3}\\
& =\frac{1}{4 \pi} \sum_{\ell=2}^{\infty}(2 \ell+1) C_{\ell} P_{\ell}(\cos \vartheta) \tag{4}
\end{align*}
$$

where $\cos \vartheta=\widehat{n}_{1} \cdot \widehat{n}_{1}$
Q : averaged over the m azimuthal modes-why?
all interesting anisotropy information encoded in

$$
\begin{equation*}
\left.C_{\ell}=\left.\langle | a_{\ell m}\right|^{2}\right\rangle \tag{5}
\end{equation*}
$$

isotropy \rightarrow azimuthal dependence averages to zero
Note: analog of Δ^{2} (variance per log scale) is
$\mathcal{T}^{2}(\ell)=\ell(\ell+1) C_{\ell}$: usually what is plotted
Since $P_{\ell}(\cos \theta) \sim(\cos \theta)^{\ell} \sim \cos (\ell \theta)$
at fixed ℓ, angular size $\theta \sim 2 \pi / \ell=180^{\circ} / \ell$
e.g., $\ell=2$ quadrupole $\rightarrow \theta \sim 90^{\circ}$
and horizon size $\theta \sim 1^{\circ}$ is at $\ell \sim 200$
and since $\theta \sim \lambda / d_{\text {rec }} \sim 1 / d k$:
\checkmark multipoles scale as $\ell \sim 1 / \theta \sim k \sim 1 / \lambda$
low $\ell \rightarrow$ big angular, physical scales \rightarrow small k

CMB Anisotropy Observations: Strategy

- achieve high sensitivity, remove systematics make a "difference experiment"
i.e., measure δT directly, don't subtract
- observe as much of the sky as possible (or as needed!)
balloons/ground: limited coverage
satellites (COBE, WMAP, Planck): all-sky
- remove Galactic contamination: "mask" plane
- recover Θ for observed region
- decompose into spherical harmonics $Y_{\ell m}$
- construct power spectrum $\ell(\ell+1) C_{\ell}$
- report results
- collect thousands of citations, prominent Prizes

CMB Temperature Anisotropies: Results

COBE (1993)

- first detection of $\delta T / T \neq 0$
- receiver horn angular opening $\sim 8^{\circ}$
\rightarrow only sensitive to large angular scales
i.e., superhorizon size
- found $(\delta T / T) \mathrm{rms} \sim 10^{-5}$
- power $\ell(\ell+1) C_{\ell}$ flat \rightarrow implies $P(k) \sim k$!
$n=1$ spectrum: scale invariant!

Interregnum (late 90's, early 00's)

- ground-based, balloons confirmed anisotropy
- acoustic peaks discovered
strong indication of first peak

WMAP (2003-)

- first all-sky survey of small angular scales
- $n=1$ confirmed, indication of small tilt $n-1 \neq 0$?
consistent with inflation! and non-trivially so!
- acoustic peaks mapped: good measurement of 1st, 2nd detection of third
- first peak: $\ell \sim 200$ horizon at recomb!
- power dropoff seen at large ℓ
\rightarrow nonzero thickness of last scattering
due to photon diffusion, non-instantaneous decoupling

