Astro 596/496 PC Lecture 4 Jan 25, 2008

Announcements:

• Preflight 1 due Friday, 12 noon

Last time:

1

Observational/Conceptual Foundations of Cosmology

- ★ Cosmological Principle
- ★ Observed Cosmic Kinematics: Hubble's Law www: modern Hubble Diagram--HST 2001
- ★ Implications of Cosmo Principle + Hubble Law

Today: Cosmodynamics I–Newtonian Cosmology

Critiques of Cosmic Egoism

www: sketch of idealized Galaxy distribution, velocity field We are at the center of the universe?

Philosophically:

• not Copernican ("principle of mediocrity")

Physically:

N

• haven't included gravity!

Observationally:

• Milky Way, Local Group don't look special not what expect from center of explosion compare supernova \rightarrow neutron star, black hole

 \dots yet radial v pattern makes us look special \dots

The Magic of Hubble

consider three arbitrary cosmic points: $\vec{r}_{BC} = \vec{r}_{AC} - \vec{r}_{AB}$

Assume A sees Hubble's law:

- $\vec{v}_{AB} = H\vec{r}_{AB}$
- $\vec{v}_{AC} = H\vec{r}_{AC}$

Then ask: what does B see? C?

find velocities relative to B: $\vec{v}_{BC} = \vec{v}_{AC} - \vec{v}_{AB} = H(\vec{r}_{AC} - \vec{r}_{AB}) = H\vec{r}_{BC}$

ω This is huge!Q: why? What have we proven?

we have shown:

if A sees Hubble's law, then so do (arbitrary) B and C thus: if *any* observer measures Hubble's law then *all* observers will measure Hubble's law!

so: Hubble law implies

- \rightarrow all galaxies recede according to same law
- \rightarrow no need for center, space has no special points

Moreover: Hubble law is *only* motion which preserves homogeneity and isotropy i.e., *any* other motion breaks cosmo principle ...but Hubble law is exactly what's observed!

4

Cosmo Principle Constrains Kinematics

consider arbitrary triangle defined by 3 observers at t_0 Hubble law \rightarrow observers in relative motion \rightarrow at later time t, larger triangle

the claim: later Δ always similar to original Δ Q: what are similar triangles? Q: why must similarity hold?

diagram: triangles, two sides $r(t_0)$, r(t), $s(t_0)$, s(t)Q: connections among r's and s's?

СЛ

similar: triangle sides keep same ratios, so must have

$$\frac{r(t)}{r(t_0)} = \frac{s(t)}{s(t_0)}$$
(1)

but this rule holds for *any triangle* so ratios can depend *only on time t*:

$$a(t) = \frac{r(t)}{r(t_0)} = \frac{s(t)}{s(t_0)}$$
(2)

σ

Q: and so...?

We have shown:

~

Cosmo Principle demands any length r(t) evolves as

$$r(t) = a(t) r_0 \tag{3}$$

where we are free to choose $a(t_0) = 1$ today, and $r_0 = r(t_0)$ is present value ("comoving coordinate")

a(t) must be universal scale factor
can depend only on time
but at any t: a has same value everywhere in space

This is huge! *Q: why? What have we proven? What is character of motion?*

Cosmic Expansion

the meaning of Hubble Law: Take 2

2. Einstein interpretation:

will see: General Relativity + Cosmo Principle demand Universe is expanding

all galaxies receding from all others bold, strange idea!

Expansion: Einstein \rightarrow Hubble

transparency demo: photocopy universe

for two arbitrary observers (e.g., "galaxies") scale factor gives distances $\vec{r}(t) = \vec{r}_0 a(t)$ so velocity is: note: "overdot" is time deriv $\dot{x} \equiv dx/dt$

$$\vec{v}(t) = \dot{\vec{r}} = \vec{r}_0 \dot{a} = \frac{\dot{a}}{a} a \vec{r}_0 \equiv H(t) \vec{r}(t)$$
 (4)

⇒ Hubble law! now interpret "Hubble parameter" as expansion rate $H(t) \equiv \dot{a}/a$

ဖ

Cosmic Scale Factor Revisited

for two "particles" (possibly Galaxies!) distance evolves according to

 $\vec{\ell}(t) = \begin{array}{c} a(t) & \vec{\ell}_{0} \\ \text{scale factor present distance} \\ time varying fixed once and for all \end{array}$ (5)

and thus

$$\vec{v} = H\vec{\ell} \tag{6}$$

with $H = \dot{a}/a$

Q: implications—present, past, future values for a?

present: at t_0 , a(t) = 1expanding, so

past: a(t) < 1future: a(t) > 1

e.g., at some time in past a = 1/2"galaxies twice as close"

Q: how do cosmic volumes depend on a? e.g., Q: when a = 1/2?

Expansion and Areas, Volumes

```
consider a cube, galaxies at corners
present side length L_0
diagram: cube, label L_0, expansion arrows
\rightarrow cube is "comoving" w/ expansion
draw arrows
volume V \propto a^3
\rightarrow V = L^3 = L_0^3 a^3 = V_0 a^3
side area A = A_0 a^2
```

```
www: raisin cake analogy
www: balloon analogy
Q: what is tricky, imperfect about each analogy?
```

12

Cosmodynamics II

a(t) gives expansion history of the Universe which in turn tells how densities, temperatures change \rightarrow given a(t) can recover all of cosmic history!

but...

How do we know a(t)? What controls how scale factor a(t) grow with time? Q: what force(s) are at work microscopically? between galaxies? Q: how are the force(s) properly described?

13

Cosmic Forces

- on microscale: particles scatter, collide
 via electromagnetic forces (also strong and weak forces)
 but no net charges or currents
 → no EM, strong, or weak forces on cosmo scales
- pressure forces: manifestation of random velocities but pressure spatially uniform → no net pressure forces!*
 Q: why uniform? why no net P force? (recall hydrostat eq)
- at large scales: only force is **gravity**

Q: what theoretical tools needed to describe this?

*Fine print for experts:

14

since $P \propto KE$ density, *does* contribute to net mass-energy and thus to *gravity*, this is a real effect and can be important for relativistic species with $v \approx c$...but even in this case, no pressure *forces* in the usual sense

Cosmodynamics Computed

cosmic dynamics is evolution of a system which is

- gravitating
- homogeneous
- isotropic

Complete, correct treatment: General Relativity \Rightarrow we will sketch this starting next week

quick 'n dirty: Non-relativistic (Newtonian) cosmology pro: gives intuition, and right answer con: involves some ad hoc assumptions only justified by GR Inputs:

- arbitrary cosmic time t
- cosmic mass density $\rho(t)$, spatially uniform
- cosmic pressure P(t): in general, comes with matter but for non-relativistic matter, P not important source of energy and thus mass ($E = mc^2$) and thus gravity so ignore: take P = 0 for now (really: $P \ll \rho c^2$)

Construction:

pick arbitrary point $\vec{r}_{center} = 0$, center of "comoving" sphere of some radius r(t)which always encloses some arbitrary but fixed mass

$$M(r) = \frac{4\pi}{3} r^3 \rho = const \tag{7}$$

16

a point on the sphere feels acceleration Q: what?

Newtonian Cosmodynamics

a point on the sphere feels acceleration

$$\ddot{\vec{r}} = \vec{g} = -\frac{GM}{r^2}\hat{r}$$
(8)

with pressure P = 0

multiply by $\dot{\vec{r}}$ and integrate:

$$\dot{\vec{r}} \cdot \frac{d}{dt} \dot{\vec{r}} = -GM \frac{\hat{r} \cdot d\vec{r}/dt}{r^2}$$
(9)

$$\frac{1}{2}\dot{r}^2 = \frac{GM}{r} + K = \frac{4\pi}{3}G\rho r^2 + K$$
(10)

$$Q$$
: physical significance of K? of it's sign?

Friedmann (Energy) Equation

introduce scale factor: $\vec{r}(t) = a(t)\vec{r_0}$ "energy" eqn: Friedmann equation

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{\kappa c^{2}}{R^{2}a^{2}}$$
(11)

we will see: full GR gives $K = -r_0^2(\kappa c^2/R^2)$ with parameters

- $\kappa = \pm 1, 0$, and
- const R is lengthscale: "curvature" of U.

In full GR:

18

▷ Friedmann eq. holds even for relativistic matter, but

$$\triangleright$$
 where $\rho = \sum_{\text{species},i} \varepsilon_i / c^2$: mass-energy density

Q:
$$a(t)$$
 behavior if $K = \kappa = 0$? if $\kappa \neq 0$?