Astro 596/496 PC Lecture 6 Feb 1, 2010

Announcements:

- PS1 due Friday
- Physics Colloquium this week: S. James Gates, Jr. (UMD)
- "Is Physical Reality a Matrix?" supersymmetry, string theory, information theory

Last time: Friedmann equations, simple solutions Ω and cosmic fate/curvature *Q: What's* Ω ? *What's "critical" about* ρ_{crit} ?

Today:

1

expand cosmic inventory, examine implications

To Be or Not to Be Relativistic

for a particle ("species") of mass mrelativistic status set by comparison: typical v vs cequivalent to comparing: typical $E_{\rm kin}$ vs mc^2 but if thermal, $E_{\rm kin} \sim kT$ \rightarrow relativistic: $kT \gg mc^2 \rightarrow$ non-relativistic: $kT \ll mc^2$

massless particles

if m = 0: always have $v = c \rightarrow$ forever relativistic e.g., photons! also gravitons (if they exist...)

massive particles

N

if m > 0: always a time in Early U when $kT \gg mc^2$

- \rightarrow massive particles born relativistic, become non-rel!
- \rightarrow relativistic status is time-dependent!

Q: are there species which are always relativistic? non? Q: what is relativistic, non-rel today?

Today: $kT_{CMB,0} \sim 10^{-4} \text{ eV}$ always: photons relativistic clearly: $m_e c^2, m_p c^2 \gg kT_0 \rightarrow \text{non-relativistic today!}$ but were relativistic in early U

but what about neutrinos? we know: 3 massive species exist do not (yet!) know mass of any species but we *do* know a laboratory-based *lower limit*: heaviest neutrino must have $m_{\nu} > 0.04$ eV \rightarrow at least one ν species non-relativistic today! \rightarrow contributes to Ω_{matter}

Redshifts I

quick-n-dirty: wavelengths are lengths! ...it's right there in the name! \rightarrow expansion stretches photon $\lambda \Rightarrow \lambda \propto a$

if emit photon at t_{em} , then at later times

$$\lambda(t) = \lambda_{\text{emit}} \frac{a(t)}{a(t_{\text{em}})} \tag{1}$$

if observe later, $\lambda_{obs} = \lambda_{em} a_{obs}/a_{em}$ measure redshift today:

$$z = \frac{\lambda_{obs} - \lambda_{em}}{\lambda_{em}} = \frac{1 - a_{em}}{a_{em}} \Rightarrow a_{em} = a(z) = \frac{1}{1 + z}$$

Newtonian Derivation of Redshift: Hubble & Doppler

~ ~

slower-n-cleaner: non-relativistic Doppler non-rel Doppler sez:

$$\frac{\delta\lambda}{\lambda} \equiv z = \frac{v}{c} \tag{2}$$

Hubble sez:

$$cz = Hr \tag{3}$$

Together

$$\frac{\delta\lambda}{\lambda} = \frac{Hr}{c} \tag{4}$$

But light travels distance r in time $\delta t = r/c$, so

$$\frac{\delta\lambda}{\lambda} = H\delta t = \frac{\dot{a}\delta t}{a} = \frac{\delta a}{a}$$
(5)

С

for arriving light, fractional λ change = fractional a change!

Scale Factor and Redshift

$$a = \frac{1}{1+z}$$
$$z = \frac{1}{a} - 1$$

most distant quasar: z = 6.4

www: SDSS QSO recordholder

most distant gamma-ray burst: $z \approx 8.2!$

www: GRB recordholder

When GRB exploded:

→ scale factor was a = 1/(1 + 8.2) = 0.11
interparticle (intergalactic) distances 11% of today!
→ galaxies were 1 + z = 9.2 times closer
on squeezed into volumes (9.2)³ = 780 times smaller!
→ age at z = 8.2: concordance U gives 650 Myr

Redshifts and Photon Energies

in photon picture of light: $E_{\gamma} = hc/\lambda$

so in cosmological context photons have

$$E_{\gamma} \propto \frac{1}{a}$$
 (6)

 $\rightarrow \gamma$ energy redshifts

Consequences:

- \triangleright Q: photon energy density $\varepsilon(a)$?
- \triangleright if thermal radiation,
 - *Q*: *T* $\leftrightarrow \lambda$ connection?
- \neg Q: expansion effect on T?

Relativistic Species

Photon energy density: $\varepsilon = E_{\gamma} n_{\gamma}$ avg photon energy: $E_{\gamma} \propto a^{-1}$ photon number density: conserved $n_{\gamma} \propto a^{-3}$ (if no emission/absorption) $\Rightarrow \varepsilon_{\gamma} \propto a^{-4}$

```
Thermal (blackbody) radiation:
Wien's law: T \propto 1/\lambda_{max}
but since \lambda \propto a \rightarrow then T \propto 1/a
```

Consequences:

- $\varepsilon \propto T^4$: Boltzmann/Planck!
- T decreases \rightarrow U cools! today: CMB $T_0 = 2.725 \pm 0.001$ K distant but "garden variety" quasar: z = 3"feels" T = 8 K (effect observed!)

Radiation and Friedmann

definition: to cosmologist, radiation \equiv relativistic matter photons or any particle with $v \sim c$, $E \sim T \gg mc^2$ energy density $\varepsilon_{rad} \propto a^{-4}$ equivalent gravitational mass density: $\varepsilon = \rho c^2 \rightarrow \rho_{rad} \propto a^{-4}$

Add radiation to Friedmann:

$$\label{eq:rho} \begin{split} \rho &= \rho_{\rm total} = \rho_{\rm m} + \rho_{\rm rad} = \rho_0 (\Omega_{\rm m,0} a^{-3} + \Omega_{\rm r,0} a^{-4}) \\ \text{note: today, } \Omega_{\rm r,0} = 4.15 \times 10^{-5} h^{-2} \ll 1 \end{split}$$

Also: Maxwell says pressure $P_{\rm EM} = \varepsilon_{\rm EM}/3$

- include this in Friedmann acceleration
- put $V = a^3$, so $\varepsilon \propto V^{-4/3}$, and

$$d(\varepsilon_{\mathsf{rad}}V) = -1/3 \ \varepsilon \, dV = -p_{\mathsf{rad}} \, dV$$

Q: physical interpretation?

Q

1st Law and Equation of State

Generalize: Cosmological "1st Law of Thermodynamics"

$$d(\rho c^2 a^3) = -pd(a^3)$$
(7)

GR verifies this is correct! \Rightarrow reconciles Friedmann energy, accel eqs: ensures that $\ddot{a} = d\dot{a}/dt$ (try it!)

to solve, need to relate p to $\rho c^2 \rightarrow$ equation of state

• non-rel matter: $p_{\rm m} \ll \rho_{\rm m} c^2 \approx 0$ Q: why? e.g., ideal gas?

• radiation:
$$p_{rad} = \rho_{rad} = \rho_{rad} c^2/3$$

• generalize: $p = w\rho c^2$ defines "state parameter" wQ: w_{matter} ?, w_{rad} ?

Can solve 1st Law eq for matter with constant w:

$$\rho_{\boldsymbol{w}} \propto a^{-3(1+\boldsymbol{w})} \tag{8}$$

Q: what if w = 0, +1/3, -1?

Cosmological Constant

Consider substance (" Λ ") with w = -1

- $p_{\Lambda} = -\rho_{\Lambda}c^2 < 0$!? negative pressure !?!
- $\rho_{\Lambda} \propto a^0 = const$

constant energy density (and pressure) !?! i.e., expansion does not change ρ_{Λ} , p_{Λ} !

Einstein (1917) "cosmological constant" A

 $\frac{1}{1}$

Cosmodynamics in a Minimally Realistic(?) Universe

For sure, the universe contains:

- Matter Q: evidence? $\rho_{\rm m} \propto a^{-3}$
- Radiation *Q: evidence?* $\rho_{\rm r} \propto a^{-4}$

Quite possibly, the universe could contain:

- Curvature curvature term $\propto a^{-2}$
- Cosmo Const (or worse!) $\rho_{\Lambda} \propto a^0 = const$

So: "minimal" but also "realistic" account of U must include these pieces:

$$\rho = \rho_{\text{tot}} = \sum_{i} \rho_i \tag{9}$$

then Friedmann sez:

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \left(\rho_{r,0}a^{-4} + \rho_{m,0}a^{-3} + \rho_{\Lambda}\right) - \frac{\kappa c^{2}}{R^{2}}a^{-2}$$
$$= H_{0}^{2} \left[\Omega_{r}a^{-4} + \Omega_{m}a^{-3} + \Omega_{\Lambda} + (1 - \Omega_{tot})a^{-2}\right]$$

Limiting cases: one term \gg all others

- radiation-dominated: $\rho_{tot} \approx \rho_r \gg \rho_{other} \Rightarrow a \sim t^{1/2}$
- matter-dominated: $a \sim t^{2/3}$
- curvature-dominated ($\kappa = -1$; Q: why?): $a \propto t^1$
- Λ -dominated: $a \propto e^{+H_{\Lambda}t}$

The Cosmic Past

Friedmann sez

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \left(\rho_{r} + \rho_{m} + \rho_{\Lambda}\right) - \frac{\kappa c^{2}}{R^{2}}a^{-2}$$
$$= \frac{8\pi G}{3} \left(\rho_{r,0}a^{-4} + \rho_{m,0}a^{-3} + \rho_{\Lambda}\right) - \frac{\kappa c^{2}}{R^{2}}a^{-2}$$

Plot: H^2 vs a

Mix-n-match:

- Q: evolution if only matter & rad? Ω ?
- Q: ... if matter, rad, and $curv(\pm)$? Ω ?
- Q: ... if matter, rad, and Λ ? Ω ?
- \mathbb{R} Q: ... if matter, rad, curv, and Λ ? Ω ?

Menu at Al Friedmann's Cosmo Café

Possible Histories of the Universe

Matter + Radiation only: $(\Omega = 1)$ rad-dom \rightarrow matter-dom; expand forever

Matter + Radiation + Curvature(-): $(\Omega < 1)$ RD \rightarrow MD \rightarrow CD; expand forever Matter + Radiation + Curvature(+): $(\Omega > 1)$ RD \rightarrow MD \rightarrow CD \rightarrow reverse; recollapse

Matter + Radiation + Λ : ($\Omega = 1$) RD \rightarrow MD \rightarrow Λ D: expand forever *exponentially*!

G Matter + Radiation + Λ + curv: (Ω ≠ 1)many possibilities! fate depends on detailed composition

Radiation and the Early Universe

note: radiation always wins out at early times
⇒ Early U is radiation-dominated
Q: why?

later evolution depends on cosmic ingredients and their relative amounts

Density and Destiny

Fate (and geometry) of U. depend on current values of $\Omega_{i,0} = \rho_{i,0}/\rho_{\rm crit,0}$ and $\Omega_0 = \sum \Omega_i$ where

$$\begin{split} \rho_{\text{crit},0} &= 3H_0^2/8\pi G \\ &= 1.9 \times 10^{-29} \ h^2 \ \text{g/cm}^{-3} \approx 10^{-29} \ \text{g/cm}^{-3} \\ &= 2.78 \times 10^{11} \ h^2 \ M_{\odot} \ \text{Mpc}^{-3} \approx 1.4 \times 10^{11} \ M_{\odot} \ \text{Mpc}^{-3} \\ &\approx 6 \ \text{H} \text{ atoms m}^{-3} \end{split}$$

Empirical question:

- is $\rho_{tot,0}$ bigger or smaller than this number?
- density is destiny! weight is fate!

Cosmic Fate & Geometry: Theory Prejudice

Consider a universe with $\Omega \neq 1$

Friedmann says

$$\Omega - 1 = \frac{\kappa c^2}{R^2 a^2 H^2} = \frac{\kappa c^2}{R^2 \dot{a}^2} \propto \frac{1}{\dot{a}^2}$$
(10)

i.e., Ω changes with time

Q: is $|\Omega - 1|$ increasing or decreasing?

- Q: limiting values of Ω at large t?
- Q: physical interpretation of these limits?
- Q: timescale for Ω to change?
- \mathbb{Q} : implications for Ω_0 ?

Time change of $|\Omega-1| \propto 1/\dot{a}^2$ is

$$\frac{d}{dt}|\Omega - 1| \propto \frac{d}{dt}\frac{1}{\dot{a}^2} = -\frac{\ddot{a}}{\dot{a}^3}$$
(11)

Two possibilities

• if $\ddot{a} > 0$: expansion of U *accelerating* then $|\Omega - 1|$ *decreasing* with time \rightarrow evolution drives $\Omega \rightarrow 1$

but recall Friedmann acceleration: $\ddot{a}/a \propto -(\rho + 3P)$ matter, radiation lead to *deceleration* i.e., all known cosmic ingredients have attractive gravity...

- if $\ddot{a} < 0$: ordinary attractive gravity, *decelerating* U
- then $|\Omega 1|$ *increasing* with time $\rightarrow \Omega$ driven increasingly away from 1