
Astronomy 210 Spring 2011
Homework Set #6

Due in class: Friday, March 11 Total Points: 50 + 10 bonus

1. On the Lookout for the Asteroid of Doom. While most asteroids have orbits that confine them to
the asteroid belt between Mars and Jupiter, there are still many that are found in the inner solar
system, to include some with orbits which cross the Earth’s. Just one asteroid impact can ruin
your entire day, as the dinosaurs discovered 65 million years ago.

(a) [5 points] Consider a near-Earth asteroid which collides with the Earth. The asteroid begins
its fall at a great distance r ≫ R⊕ and with an initial speed v0. Calculate the speed vhit with
which the asteroid impacts the Earth (i.e., arrives at the Earths’ surface r = R⊕). Energy
conservation will be useful here. You should find that vhit ≥ vesc, that is, the impact speed is
always at least the escape speed.

(b) [5 points] Find an expression for the kinetic energy of an asteroid impacting the Earth at
the escape speed. You may assume the asteroid is spherical with radius s and with uniform
density ρ.

Evaluate this impact energy for a medium-sized s = 1 km asteroid with density ρ = ρrock =
3000 kg/m3. Compare your answer to the energy released from a “small” nuclear explosion
(equivalent to 1 kTon of TNT, 4 × 1012 Joules), and a large explosion (1 MTon of TNT, 4×
1015 Joules), and comment on possible effects for the impact region and for global civilization.
For comparison, the global nuclear arsenal represents about 104 MTon.

(c) [5 points] It is obviously of interest to identify and track near-Earth asteroids. The upcoming
Large Synoptic Survey Telescope (LSST) will, throughout 10 years of operation, repeatedly
scan the entire southern sky every 2 to 4 days. The resulting “movie” will reveal anything
that changes in the sky over timescales from days to years.

Consider a spherical asteroid of radius s and albedo A, located a distance d from the Sun.
Find the luminosity L of the sunlight reflected by the asteroid. Then show that, if the asteroid
is a distance r from the Earth, then the flux of this reflected sunlight is

F =
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(d) [5 points] Consider a s = 1 km asteroid orbiting the sun with d = 1 AU, and at a distance
r = 0.1 AU from the Earth. Asteroid albedos vary, but take an average value of A = 0.1.
Find the brightness F of the asteroid, in Watt/m2. LSST is sensitive to fluxes as small as
Fmin ≈ 10−17 Watt/m2. Can LSST detect this asteroid?

(e) [5 bonus points] We confirm that the object in part 1d is an asteroid by observing its
motion relative to the Earth. Consider an asteroid with semimajor axis a and eccentricity e.
Show that when the asteroid is at aphelion, it’s speed is given by
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where vc is the speed the asteroid would have in a circular orbit of radius a.

(f) [5 points] A near-Earth asteroid with semi-major axis a = 1 AU and e = 0.1 is seen at
opposition while it is at aphelion. Taking the Earth’s orbit to be circular, find the relative

speed δv between the asteroid and the Earth; express your answer in m/s. Then find the
angular speed ω = δv/r of the asteroid as seen by Earth, where r the distance to the asteroid;
convert your answer from radians/sec to degrees/day.

(g) [5 points] LSST can easily measure changes in sky position (“proper motion”) of 0.01 arc-
sec/year or larger. Can LSST detect the motion of asteroid in part 1f? Will it do this in days,
months, years, or never? How well could it map the asteroid’s orbit?
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(h) [5 points] Given the results in part 1d, find the maximum size smin of asteroids which are
not detectable because they are at or below the flux limit Fmin of LSST (again taking d = 1
AU and r = 0.1 AU). Find the energy released when such an undetectable object collides with
the Earth, and comment on the danger posed by such an impactor.

2. The Greenhouse Effect. In class, we calculated planetary temperatures as a function of distance
d from sun, albedo A, and whether the planet has a thick atmosphere or not. Our simple “first
order” treatment was idealized, and for example did not allow for greenhouse effect. We can make
a simple but instructive estimate of the greenhouse effect as follows.

Imagine the greenhouse gasses in the Earth’s atmosphere to
be a single layer that is completely transparent to the visible
wavelengths of the light received from the Sun, but com-
pletely opaque to the infrared radiation emitted by the sur-
face of the Earth. Assume (1) that the top and bottom sur-
face areas of the atmosphere are each equal to the surface
area of the planet, (2) that the entire layer is at the same
temperature Ta, and (3) that the layer radiates from both
the top and the bottom.
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(a) [5 points] In this model, the top of the atmosphere is responsible for radiating away all
thermal energy from the Earth. Show that energy conservation demands that Ta = Teq, where
Teq is the equilibrium temperature of the Earth as found in class.

(b) [5 points] For the moment set aside the result from part (a), and focus on the energy flows
into and out of the atmosphere as well as those in and out of the ground. Show that energy
conservation applied to the atmosphere gives

2T 4
a = T 4

g (3)

and applied to the ground it gives
T 4
g = T 4

eq + T 4
eq (4)

were Tg is the temperature of the ground, and again Teq is the greenhouse-free equilibrium
temperature found in class.

Using only these equations, solve for both Ta and Tg in terms of Teq. Verify that you recover
the result in part (a). Also verify that Tg > Teq and thus the planet’s surface is hotter than it
would have been without an atmosphere.

(c) [5 bonus points] Now consider the case where the atmosphere consists of N layers of gas,
each with its own temperature. If we call the top layer number 1, show that 2T 4

1 = T 4
2 . Layer

N is then directly above the ground. Show that T 4
g = T 4

N
+ T 4

eq. Also show that for any other
atmospheric layer 1 < n < N − 1, we have 2T 4

n = T 4
n−1 + T 4

n+1 Finally, show that all of these
equations are satisfied if we have, for all layers n,

T 4
n = nT 4

eq (5)

and the surface has
T 4
g = (N + 1)T 4

eq (6)

(d) [5 points] The true average temperature of the Earth (A = 0.4) is about 15◦C. Convert this
to Kelvin, and take this as Tg. According to our model (eq. 6), how many layers N does the
Earth’s atmosphere have? This measure of atmospheric “effective thickness” to radiation need
not be an integer.

Using the same albedo, compare the equilibrium temperature of Venus (orbital distance d =
0.72 AU, albedo A = 0.67) with its surface temperature 460◦C, and calculate the number N
of layers in the Venus’ atmosphere. Comment on your result.


