$$
\begin{gathered}
\text { Astro } 210 \\
\text { Lecture } 10 \\
\text { Feb 9, } 2011
\end{gathered}
$$

Announcements

- HW3 due Friday

HW1 Q8 bonus still available

- Office hours: Instructor 2-3pm Wed TA 10:30-11:30am Thurs
- Planetarium: new shows added registration, report form, info online

Last time: Kepler from Newton
solve $\vec{F}=m \vec{a}=m \ddot{\vec{r}}$ with $\vec{F}=-G M m / r^{2} \widehat{r}$
gives back Kepler's laws, and so

- agrees precisely with observed planet orbits
- also explains how orbits arise from gravity
- and gives, e.g., circular speed: $v_{\mathrm{c}}=\sqrt{\frac{G M}{r}}$
- and updates Kepler III: $a^{3}=\left(\frac{G M}{4 \pi^{2}}\right) P^{2}$

Newtonian gravity: possible orbits line, circle, ellipse, parabola, hyperbola

Gravity and energy

- bound vs unbound orbits

Q: which is which? what is condition for bound vs unbound?

- escape speed $v_{\mathrm{esc}}=\sqrt{2 G M / r}$
Q : why is this important?

Escape Speed

At radius r, define escape speed $v_{\text {esc }}=\sqrt{2 G M / r}$

- if launch from r with $v_{\text {launch }}<v_{\text {esc }}$ then $T E<0$: fall back! (elliptical orbit)
- if launch from r with $v_{\text {launch }}>v_{\text {esc }}$ then $T E>0$: escape "easily": $v>0$ at $r=\infty$
- if launch from r with $v_{\text {launch }}=v_{\text {esc }}$ exactly then $T E=0$ exactly, "just barely" escape

So: escape speed is minimum speed needed to leave a gravitating source

Example: escape speed from earth $v_{\text {esc }}=11 \mathrm{~km} / \mathrm{s}=25,000 \mathrm{mph}$!
predict the future: if toss object with $v<25,000 \mathrm{mph}$, falls back but if $v>25,000 \mathrm{mph} Q$: example? never returns!
finally, the more "generic" unbound orbit:

hyperbola

$$
\begin{equation*}
r(\theta)=\frac{\left(e^{2}-1\right) a}{1+e \cos \theta} \tag{1}
\end{equation*}
$$

$e>1, T E>0$
$v>0$ at $r=\infty$: nonzero speed far from M

Recall: at large r, hyperbola \rightarrow straight line
But Newton says: $d \vec{v} / d t=-\frac{G M}{2} \widehat{r}$
so as $r \rightarrow \infty$, then $d \vec{v} / d t \rightarrow 0$
\Rightarrow gravity negligible, $\vec{v} \rightarrow$ const: free body=straight line!
orbit of unbound "flyby":
$+$ distant nearly free body \rightarrow passing: pulled toward M
\rightarrow distant deflected nearly free body

Two-Body Problem

Thus far: cheated! (i.e., simplified)
(1) neither Sun nor planets "nailed down", and
(2) Newton III \rightarrow planets exert net force on Sun
\Rightarrow (3) Sun moves too! (but larger M, so less accel.)

How to analyze 2-body system?
imagine a box, with mass M, with no net forces on it (floating in space).
Q : how would it move?
Q: what if the box has pieces in it-still same answer?
box of mass M : without forces, moves inertially
i.e., as free body \rightarrow constant \vec{v}
now open box: contains two pieces, mass m_{1} and m_{2} no matter what pieces do, box still has constant \vec{v}
now imagine moving with same velocity as box:
so to you, box is at rest
if at one time, know where the two particles are (draw)
then later if particle 1 has moved (draw new position) then:
Q : can you say anything about where particle 2 has to be?
diagram: draw m_{1}, m_{2}, then dotted box around, and $M=$ $m_{1}+m_{2}$
define center of mass (COM):

$$
\begin{equation*}
\vec{R}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}} \tag{2}
\end{equation*}
$$

draw \vec{R} on diagram
a mass-weighted average
Can show: $\ddot{\vec{R}}=0 \rightarrow \dot{\vec{R}}=$ const.
\rightarrow can pick inertial frame where $\dot{\vec{R}}=0$, choose $\vec{R}=0$: origin of coordinates

Planet \& Sun as a Two-Body System

in Sun-planet system: center of mass is "fixed" (free body)
but Newton III says that since Sun pulls on planet
then planet pulls back on Sun
\rightarrow both accelerate
\rightarrow both orbit around center of mass
Q: but what's the difference in the motions?
Q: who's more correct: Copernicus or Ptolemy?

Testing Newton’s Gravity

Moons of Juptier: obey Kepler's Iaws
\rightarrow Jupiter's gravity works like Sun's, Earth's

1830's: Uranus observed orbit did not follow predictions of Newtonian solar system model
\Rightarrow the death Newton's gravity?
recall: theory must explian all data, not just some! so despite Newton's great job with planets, moons even one clear failure is enough

Q: so do we have to throw out Newtonian gravity?
\bullet
Q: why hesitant to throw out?
Q: if not abandon, what's another solution to the problem?

iClicker Poll: Uranus Discrepancy

1830's Problem: measured Uranus orbit doesn't match preditions of Newtonian Gravity theory

Vote your conscience!
Which seems more likely to you?

A Newton's gravity theory correct, but not all gravity sources had been included

B Newton's gravity theory incorrect (or at least incomplete)

Q: what experiment/observation would tell which is right?
maybe haven't included all sources of gravity?
maybe unknown/unseen object causes U's deviations?
\Rightarrow a new planet?
if unknown object, could predict where should be did this, looked. saw:
www: Neptune
1846: Neptune found at right position
\triangleright predicted by Newton's gravity ("dark matter")
very impressive! victory snatched from jaws of defeat!
triumph of Newtonian dynamics and gravity
many other confirming observations
$\stackrel{\square}{\square}$
www: binary star orbits

Heliocentric vs Geocentric Finale

What is the main lesson, for the practice of science, of the geocentric vs heliocentric shift?

Note:
not asked content of science (don't say lesson=heliocentric)
but rather the practice-what does it tell us here and now about how to do science?

Geocentric vs Helocentric: Lessons

For me, a big lesson is Humility!
naive to think: "Greeks dumb, we're smart"
rather a sobering reminder: sometimes, same observations can be explained in radically different ways
also: can have bias not even aware of
shapes how view world, seems reasonable to everyone humbling! examples in QM, relativity
what's more...probably going on still today! remember: all astronomy, all science ultimately tentative In this course: my guess: ~ 80\% stand test of time but don't know which 20% is wrong...so have to learn it all!
that said, not everything up for grabs or matter of taste...
$\stackrel{\rightharpoonup}{\omega}$ confidance/uncertainty varies tremendously
My Wagers

