Astro 210 Lecture 12 Feb 14, 2011

Announcements

- Hour Exam 1 in class Friday info online
- Planetarium shows: today, tomorrow, Thursday, next Mon registration, report forms, info online
- Night Observing this week Mon-Thurs. *Dress warmly!* report forms, info online

Last time: light=electromagnetic radiation as astronomer's tool

• Q: why "electromagnetic"? why "radiation"?

iClicker Poll: Orange & Blue at the Races

Which travels faster in a vacuum?

A orange light (note: $\lambda_{\text{orange}} > \lambda_{\text{blue}}$)

B blue light (note: $f_{blue} > f_{orange}$)

C speeds are exactly the same

also from last time:

flux F = (dE/dt)/A = incident power/collecting area Q: how does your eye interpret flux?

Radiation from a Spherical Source

consider a **spherical** source of light emitting equal amounts of radiation in all directions

at emitter surface, radius R, flux is F_{surf}

Q: what is total light power L emitted from source?

now consider a sphere of radius r > R, concentric with source (between R and r is vacuum)

Q: what is total light power incident on sphere at r?

Q: what is flux F(r) at r?

ω

Inverse Square Law for Flux

recall flux definition: $F = \frac{dE/dt}{A} = \frac{\text{incident power}}{\text{collecting area}}$ Spherical source emitting flux F_{surf} from surface at R: radiated power (light energy outflow per unit time) = **luminosity**

 $L = L_{\text{emit}} = \text{surface area} \times \text{flux at surface} = 4\pi R^2 F_{\text{surf}}$ (1)

for concentric sphere at r > R:

total incident power (energy *inflow*) must equal source *outflow* due to energy conservation:

$$L_{\text{incident}} = L_{\text{emit}} = L \tag{2}$$

and flux is just

$$F(r) = \frac{L}{4\pi r^2}$$

observed flux =apparent brightness depends on

• source via
$$F \propto L$$

4

• observer distance via $F \propto 1/r^2$: inverse square law for flux

Kirchoff's Rules

can classify three basic kinds of spectra:

CЛ

diagram: hot solid, cooler gas, lines of sight

1. A hot and opaque solid, liquid or dense gas emits a continuous spectrum (A) diagram: continuous spectrum: $F vs \lambda$

2. A hot low-density (transparent) gas produces emission line spectrum note: pattern of lines specific to element *diagram: emission line spectrum:* $F vs \lambda$ 3. Continuous radiation viewed though cooler gas produces an absorption line spectrum *label C on diagram diagram: absorptions line spectrum* note: the lines absorbed have same color/wavelength as the lines in emission line spectrum: F vs λ

these effects are godsends for astrophysics! *Q: why?*

Observer's Scorecard

You can see an awful lot, just by looking. -- Asrophysicist Yogi Berra

can use emission/absorption lines to inventory kinds of elements in an astronomical source

light spectrum gives atom "fingerprint" or "barcode"

spectrum \rightarrow composition

Example: The Sun

Sun, stars hotter, denser in center cooler, less dense at surface so: sunlight/starlight shows *Q: what kind of spectrum?* www: Sun spectrum amount absorbed in each line \rightarrow amount of atoms \rightarrow composition of Sun; works for other stars too!

Note: as yet, don't know where lines comes from who assigns cosmic barcodes?

for this, need to understand how light interacts with matter

Matter

6

92 natural, 23+ artificial www: periodic table determined by nuclear charge Z = # protons e.g., hydrogen H: Z = 1uranium U: Z = 92 same element (same # p) can have different # neutrons \rightarrow "isotopes"

examples: most hydrogen is ${}^{1}H = \boxed{1p, 0n}$ but $\sim 10^{-4}$ of hydrogen is deuterium ${}^{2}H = \boxed{1p, 1n}$ most U is ${}^{238}U = \boxed{92p, 146n}$; about $\sim 1\%$ is ${}^{235}U = \boxed{92p, 143n}$

atom net charge fixed by # electrons # $e = # p \rightarrow$ neutral # $e = # p - 1 \rightarrow$ singly ionized

Note: all p, n, e are absolutely *identical* and *indistinguishable* this turns out to be crucial for the understanding of matter in a quantum mechanical way

10

Atoms & Spectra

how are spectral lines ("barcode") related to atom structure?

Balmer hydrogen gas \rightarrow emission line spect. (visible λ) found empirical pattern to lines

$$\lambda = 3.65 \times 10^{-7} \frac{n^2}{n^2 - 4} \text{ m} \quad n \text{ integer } \ge 3$$
 (3)

(1) only these lines seen and no others(2) simple mathematical structure cries out for explanation!

try it! for n = 3: $\lambda_{n=3} = 3.65 \times 10^{-7} \frac{9}{9-4} \text{m} = 656 \text{nm}$ *Q: what color is this?* www: Balmer spectrum www: Sun spectrum; $\text{H}\alpha \rightarrow \text{the Sun contains hydrogen!}$

11

Prince Louis-Victor de Broglie

not only light behaves like particle & wave but also matter:

 \rightarrow matter waves exist!?!

12

what is λ ? for photons, λ and p = E/c related:

$$\lambda = \frac{c}{f} = \frac{c}{E/h} = \frac{hc}{E} = \frac{h}{p}$$
(4)

de Broglie hypothesis/guess: same holds for matter

$$\lambda = \frac{h}{p} = \frac{h}{mv} \tag{5}$$

i.e., matter has wave properties expect to show up on lengthscales $\sim \lambda$

Q: so why doesn't a baseball diffract out of your hand?

A Quantum Baseball?

regulation mass m = 5 oz = 0.14 kg easy toss: $v \sim 1$ m/s \rightarrow momentum $p = mv \sim 0.14$ kg m/s \rightarrow de Broglie wavelength

$$\lambda_{\text{deB,baseball}} = \frac{h}{p} = 5 \times 10^{-33} \text{ m} \lesssim 10^{-14} \times \text{size of proton}$$
 (6)

wave properties and hence quantum effects unobservably small! \rightarrow expect baseballs to exhibit classical (Newtonian) behavior \rightarrow can't blame fielding errors on quantum mechanics!

Q: in what circumstances would quantum effects not be small? i.e., for what objects is λ_{deB} larger?

Bohr model of the atom

quantum structure of atom: e orbits are matter waves

- de Broglie waves \rightarrow standing waves in atom
- *e* orbits circular
- \bullet only certain radii, speeds allowed (''quantized states'') \rightarrow only certain allowed energies
- during *e* transitions between states, photon emitted \rightarrow photon energies quantized \rightarrow spectral lines

Together, these assumptions \rightarrow atom structure

standing waves: *Demo*: slinky *e* orbit path length an integer multiple of

 λ :

$$2\pi r = n\lambda = n\frac{h}{m_e v} \tag{7}$$

 \rightarrow for each n, radii and speeds related

Coulomb force provides centripetal accel: Q: remind me-what is Coulomb force? Coulomb force: electrical attraction between opposite charges an inverse square law! same structure as gravity!

$$F = \frac{q_1 q_2}{r^2} = \frac{e^2}{r^2}$$
(8)
(cgs charge units: $e_{cgs}^2 = k e_{SI}^2 = e_{SI}^2 / 4\pi\varepsilon_0$)

Coulomb provides centripetal acceleration:

$$\frac{e^2}{r^2} = m_e \frac{v^2}{r} \tag{9}$$

another relation between r and v

 \rightarrow two equations, two unknowns \rightarrow solution exists