> Astro 210
> Lecture 12
> Feb 14,2011

Announcements

- Hour Exam 1 in class Friday
info online
- Planetarium shows: today, tomorrow, Thursday, next Mon registration, report forms, info online
- Night Observing this week Mon-Thurs. Dress warmly! report forms, info online

Last time: light=electromagnetic radiation as astronomer's tool

- • Q: why "electromagnetic"? why "radiation"?


## iClicker Poll: Orange \& Blue at the Races

## Which travels faster in a vacuum?

A orange light (note: $\lambda_{\text {orange }}>\lambda_{\text {blue }}$ )

B blue light (note: $f_{\text {blue }}>f_{\text {orange }}$ )

C speeds are exactly the same
also from last time:
flux $F=(d E / d t) / A=$ incident power/collecting area
Q: how does your eye interpret flux?

## Radiation from a Spherical Source

consider a spherical source of light emitting equal amounts of radiation in all directions
at emitter surface, radius $R$, flux is $F_{\text {surf }}$
Q: what is total light power $L$ emitted from source?
now consider a sphere of radius $r>R$, concentric with source (between $R$ and $r$ is vacuum)

Q: what is total light power incident on sphere at $r$ ?
$Q$ : what is flux $F(r)$ at $r$ ?

## Inverse Square Law for Flux

recall flux definition: $F=\frac{d E / d t}{A}=\frac{\text { incident power }}{\text { collecting area }}$
Spherical source emitting flux $F_{\text {surf }}$ from surface at $R$ : radiated power (light energy outflow per unit time) = luminosity

$$
\begin{equation*}
L=L_{\mathrm{emit}}=\text { surface area } \times \text { flux at surface }=4 \pi R^{2} F_{\text {surf }} \tag{1}
\end{equation*}
$$

for concentric sphere at $r>R$ :
total incident power (energy inflow) must equal source outflow due to energy conservation:

$$
\begin{equation*}
L_{\text {incident }}=L_{\mathrm{emit}}=L \tag{2}
\end{equation*}
$$

and flux is just

$$
F(r)=\frac{L}{4 \pi r^{2}}
$$

observed flux =apparent brightness depends on

- source via $F \propto L$
- observer distance via $F \propto 1 / r^{2}$ : inverse square law for flux


## Kirchoff's Rules

can classify three basic kinds of spectra:
diagram: hot solid, cooler gas, lines of sight

1. A hot and opaque solid, liquid or dense gas emits
a continuous spectrum (A)
diagram: continuous spectrum: $F$ vs $\lambda$
2. A hot low-density (transparent) gas produces emission line spectrum
note: pattern of lines specific to element
u diagram: emission line spectrum: $F$ vs $\lambda$
3. Continuous radiation viewed though cooler gas produces an absorption line spectrum
label C on diagram
diagram: absorptions line spectrum
note: the lines absorbed have same color/wavelength as the lines in emission line spectrum: $F$ vs $\lambda$
these effects are godsends for astrophysics!
$Q$ : why?

## Observer's Scorecard

You can see an awful lot, just by looking.
-- Asrophysicist Yogi Berra
can use emission/absorption lines to inventory kinds of elements in an astronomical source

```
light spectrum gives atom "fingerprint" or "barcode"
```

spectrum $\rightarrow$ composition

## Example: The Sun

Sun, stars hotter, denser in center cooler, less dense at surface so: sunlight/starlight shows $Q$ : what kind of spectrum?
www: Sun spectrum
amount absorbed in each line $\rightarrow$ amount of atoms
$\rightarrow$ composition of Sun; works for other stars too!

Note: as yet, don't know where lines comes from who assigns cosmic barcodes?
for this, need to understand how light interacts with matter

## Matter

Recall:

atoms come in elements
92 natural, $23+$ artificial
www: periodic table

- determined by nuclear charge $Z=\#$ protons
e.g., hydrogen $\mathrm{H}: Z=1$
uranium $\cup: Z=92$
same element (same \# p) can have different \# neutrons
$\rightarrow$ "isotopes"
examples: most hydrogen is ${ }^{1} \mathrm{H}=1 p, 0 n$
but $\sim 10^{-4}$ of hydrogen is deuterium ${ }^{2} \mathrm{H}=1 p, 1 n$
most U is ${ }^{238} \mathrm{U}=92 p, 146 n$; about $\sim 1 \%$ is ${ }^{235} \mathrm{U}=92 p, 143 n$
atom net charge fixed by \# electrons
$\# e=\# p \rightarrow$ neutral
$\# e=\# p-1 \rightarrow$ singly ionized

Note: all $p, n, e$ are absolutely identical and indistinguishable this turns out to be crucial for the understanding of matter
$\stackrel{\square}{\circ}$ in a quantum mechanical way

## Atoms \& Spectra

how are spectral lines ("barcode") related to atom structure?

Balmer hydrogen gas $\rightarrow$ emission line spect. (visible $\lambda$ )
found empirical pattern to lines

$$
\begin{equation*}
\lambda=3.65 \times 10^{-7} \frac{n^{2}}{n^{2}-4} \mathrm{~m} \quad n \text { integer } \geq 3 \tag{3}
\end{equation*}
$$

(1) only these lines seen and no others
(2) simple mathematical structure cries out for explanation!
try it! for $n=3$ :
$\lambda_{n=3}=3.65 \times 10^{-7} \frac{9}{9-4} \mathrm{~m}=656 \mathrm{~nm}$
$\sharp$ Q: what color is this? www: Balmer spectrum www: Sun spectrum; $\mathrm{H} \alpha \rightarrow$ the Sun contains hydrogen!

## Prince Louis-Victor de Broglie

not only light behaves like particle \& wave but also matter:
$\rightarrow$ matter waves exist!?!
what is $\lambda$ ?
for photons, $\lambda$ and $p=E / c$ related:

$$
\begin{equation*}
\lambda=\frac{c}{f}=\frac{c}{E / h}=\frac{h c}{E}=\frac{h}{p} \tag{4}
\end{equation*}
$$

de Broglie hypothesis/guess: same holds for matter

$$
\begin{equation*}
\lambda=\frac{h}{p}=\frac{h}{m v} \tag{5}
\end{equation*}
$$

i.e., matter has wave properties
expect to show up on lengthscales $\sim \lambda$

Q: so why doesn't a baseball diffract out of your hand?

## A Quantum Baseball?

regulation mass $m=5 \mathrm{oz}=0.14 \mathrm{~kg}$
easy toss: $v \sim 1 \mathrm{~m} / \mathrm{s}$
$\rightarrow$ momentum $p=m v \sim 0.14 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$\rightarrow$ de Broglie wavelength

$$
\begin{equation*}
\lambda_{\text {deB, baseball }}=\frac{h}{p}=5 \times 10^{-33} \mathrm{~m} \lesssim 10^{-14} \times \text { size of proton } \tag{6}
\end{equation*}
$$

wave properties and hence quantum effects unobservably small! $\rightarrow$ expect baseballs to exhibit classical (Newtonian) behavior
$\rightarrow$ can't blame fielding errors on quantum mechanics!

Q: in what circumstances would quantum effects not be small?
i.e., for what objects is $\lambda_{\text {deB }}$ larger?

## Bohr model of the atom

quantum structure of atom: e orbits are matter waves

- de Broglie waves $\rightarrow$ standing waves in atom
- e orbits circular
- only certain radii, speeds allowed ("quantized states") $\rightarrow$ only certain allowed energies
- during e transitions between states, photon emitted $\rightarrow$ photon energies quantized $\rightarrow$ spectral lines

Together, these assumptions $\rightarrow$ atom structure
standing waves:
Demo: slinky
$e$ orbit path length an integer multiple of $\lambda$ :

$$
\begin{equation*}
2 \pi r=n \lambda=n \frac{h}{m_{e} v} \tag{7}
\end{equation*}
$$

$\rightarrow$ for each $n$, radii and speeds related
in Coulomb force provides centripetal accel: $Q$ : remind me-what is Coulomb force?

Coulomb force: electrical attraction between opposite charges an inverse square law! same structure as gravity!

$$
\begin{equation*}
F=\frac{q_{1} q_{2}}{r^{2}}=\frac{e^{2}}{r^{2}} \tag{8}
\end{equation*}
$$

(cgs charge units: $e_{\text {Cgs }}^{2}=k e_{\mathrm{SI}}^{2}=e_{\mathrm{SI}}^{2} / 4 \pi \varepsilon_{0}$ )

Coulomb provides centripetal acceleration:

$$
\begin{equation*}
\frac{e^{2}}{r^{2}}=m_{e} \frac{v^{2}}{r} \tag{9}
\end{equation*}
$$

another relation between $r$ and $v$
$\rightarrow$ two equations, two unknowns $\rightarrow$ solution exists

