Astro 210 Lecture 14 Feb 21, 2011

Announcements

 \vdash

- HW4 due at start of class Friday
- last Planetarium show tonight registration, report forms, info online
- Night Observing this week *Dress warmly!* report forms, info online

Before exam: light & matter

blackbody radiation = *thermal radiation*

Q: what is it? What objects emit it? How does it depend on T?

Q: how is it useful to astronomers?

Blackbody radiation:

- glow of hot objects
- emitted by solids, liquids, dense gasses with any temperature T (= in thermal equilibrium)
- spectrum: $F(\lambda)$ increases sharply to peak at λ_{\max} then falls off at long λ www: blackbody spectra
- a T increases: flux higher, peak shifts \rightarrow shorter λ

Wien's law

$$\lambda_{max} = \frac{2.9 \times 10^{-3} \text{ mK}}{T}$$
where T is in Kelvin: $T(K) = T(^{\circ}C) + 273$

- \sim Example: the Sun
 - www: solar spectrum Q: comments?

solar spectrum: not perfectly a blackbody (e.g., absorption lines) but very close

solar spectrum peaks in middle of visible range: $\lambda_{max,\odot}\simeq 500~nm$ Surface temperature is:

$$T_{\odot} \approx \frac{2.9 \times 10^{-3} \text{ mK}}{500 \times 10^{-9} \text{ m}} = 5800 \text{ K}$$
 (1)

Observer's Scorecard

Blackbody spectrum & Wien's law are powerful tools: get T from spectrum!

 $color \leftrightarrow temperature$

Q: are stars all the same color? what does this imply? www: objective prism spectra Q: compare bright stars in Orion: Betelgeuse, Aldebaran

Blackbodies: Total Flux

Total flux over all $\lambda = \text{sum of flux at each interval } \Delta \lambda$

$$F = \sigma T^4$$
 Stefan–Boltzmann Law (2)

where

СЛ

$$\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$$
 Stefan-Boltzmann constant (3)

flux units: [energy per per unit area per unit time]

Ex: the Sun total solar **power** output: "Wattage" = rate per second of energy flow into space = solar "luminosity" = $L_{\odot} = 3.85 \times 10^{26}$ W Q: how to calculate this?

given L_{\odot} and solar radius R_{\odot} *Q:how find Sun's blackbody temperature?* Use Stefan-Boltzmann to relate Sun's surface flux to surface temperature:

$$F_{\odot,\text{surface}} = \frac{L}{\text{surf. area}} = \frac{L}{4\pi R_{\odot}^2} = 6.3 \times 10^7 \frac{\text{W}}{\text{m}^2} \qquad (4)$$
$$\Rightarrow T^4 = \frac{F}{\sigma} \qquad (5)$$
$$\Rightarrow T = \left(\frac{F}{\sigma}\right)^{1/4} = 5800 \text{ K} \qquad (6)$$

check! this luminosity-based value agrees with earlier color-based value using Wein's law \rightarrow good consistency check, didn't have to agree Q: what would disagreement mean?

```
And finally: flag thermodynamics(?)
Wein says: blue \rightarrow T \sim 8,000 K
red \rightarrow T \sim 3,000 K
Q: why doesn't a US flag burst into flame?
why aren't blue regions twice as hot as red?
```

Ω

Doppler Effect

consider a moving light source

- \bullet moves at constant speed v
- emits light of wavelength λ_{em} as measured in emitter's rest frame

Each wave crest propagates spherically from emission point but emission points move, so...

Q: how does this affect observed wavelength λ_{obs} ?

Q: does the effect depend on viewing angle? how or why not?

in front of emitter: wave crests "bunch up"

- \rightarrow approaching objects observed at smaller wavelength
- \rightarrow shorter λ : "blue shift"

behind emitter: wave crests "stretched out" \rightarrow receding objects observed at longer wavelength \rightarrow longer λ : "red shift"

shift depends only on **relative** motion in **radial** direction ("line of sight")

$$\frac{\lambda_{\rm obs} - \lambda_{\rm em}}{\lambda_{\rm em}} = \frac{\Delta\lambda}{\lambda} = \frac{v_r}{c} \tag{7}$$

where $v_r > 0$ means moving away

 \odot

Observer's Scorecard

Doppler effect: speed $\leftrightarrow \lambda$ shift

$redshifts/blueshifts \rightarrow speedometer$

namely: measure $\lambda_{\rm obs}$, know $\lambda_{\rm em} \rightarrow {\rm find} \ v_r = \frac{\Delta \lambda}{\lambda} \ c$

Q: but how does it work in practice? how do you know a line is shifted?

Telescopes

so far: how light encodes information today: how to collect & decipher it

Telescopes:

- 1. collect/concentrate photons
- 2. detect photons
- *Q: collection methods–naked eye? scopes?*

Light Collection: bring to focus, form image

1. lens "refractor"

Snell's law: light bent due to change in index of refraction i.e., change of speed—slower in glass. With curved surface, can concentrate rays

problems:

- spherical aberration
- chromatic aberration
- \bullet lens "sag" increases with size \rightarrow limits lens size

2. mirror "reflector"

mirrors: angle of incidence = angle of reflection. With curved surface, can bring to focus.

merits:

- no chromatic abberation
- no sag Q: because?

problems:

spherical abberation

all modern research telescopes are reflectors

iClicker Poll: Telescope Properties

What is the most important aspect of a telescope?

- A Ability to magnify small angular regions
- B Ability to detect faint objects (small flux)
- C Ability to see fine detail (features on small angular scales)

Telescope Power

telescope priorities and dependence on lens/mirror diameter D ("aperture")

*** Light Gathering Power**

astronomical objects are $\dim \rightarrow$ need as much light as possible \rightarrow need ''photon bucket''

light gathering power \propto area of lens/mirror $\propto D^2$

bigger is better!

Hubble: D = 2.4 m (www: HST primary)

Keck (Hawaii): $D = 10 \text{ m} (\text{www: Keck primary}) \rightarrow 17 \times \text{the LGP!}$

- so for a fixed exposure time, Keck can see objects $17 \times$ fainter flux
- or to see the same level of brightness Keck needs to expose $17 \times$ less time

\star Angular Resolution

ang res = smallest angular separation distinguishable \rightarrow sets angular size of finest detail in image best resolution allowed by wave nature of light: diffraction limit: smallest angular size

$$\theta_{\rm obs} \ge \theta_{\rm min,obs} = \theta_{\rm diff} = 1.22 \frac{\lambda}{D}$$
 (8)

objects separated by $\theta < \theta_{\rm obs}$ smeared together as one blob

Keck: $\theta_{diff} = 0.01$ arc sec at 500 nm but: Earth atm \rightarrow turbulence ("twinkling") www: twinkle animation $\rightarrow \theta_{obs,Keck} = \theta_{atm} \ge 1$ arc sec $\gg \theta_{diff}$: Aaargh!

$$\overset{\circ}{\circ}$$
 Q: so obviously, the solution is?

go to space! \rightarrow HST $\theta_{diff} = 0.05$ arc sec at 500 nm this is the main motivation for Hubble Telescope! \rightarrow unprecedented angular resolution

***** Magnification

only worthwhile if enough light gathering power & resolution \rightarrow need to have a sharp image to magnify! magnification set by focal lengths of objective (i.e., main mirror) and eyepiece: magnification = $f_{\rm obj}/f_{\rm eye}$