Astro 210 Lecture 15 Feb 23, 2011

Announcements

- HW4 due at start of class Friday
- Night Observing tonite, tomorrow, next week *Dress warmly!* report forms, info online
- HW3 back today
- Hour Exam: grading elves hard at work but takes time

Last time: telescopes

 $\vdash$ 

## The Division of Labor in Astronomy/Astrophysics

Working astronomers/astrophysicists generally spend their time in *one* of these roles

- **observer**: collect, analyze, and interpret telescope data
- **theorist/simulator**: use physics to make models/predictions
- instrumentalist: design/build new scopes/detectors
- A few very talented people do more than one of these well
- ▷ Beware! each comes with its own biases and "culture"!

# iClicker Poll: Instructor Culture of Origin

Vote your conscience! Which of these is your instructor?

observer

B theorist

C instrumentalist

Last time: telescopes

- light collection: refractors vs reflectors Q: what's the diff? Which is your eye?
  - Q: What do the pros use nowadays?
- scopes as "light buckets" light gathering power  $\propto D^2$

ω

#### **\*** Angular Resolution

ang res = smallest angular separation distinguishable  $\rightarrow$  sets *angular size* of *finest detail* in image

wave nature of light:

passing through finite telescope aperture (non-infinite diameter) light rays diffract: bent

 $\rightarrow$  pointlike source image smeared into blob (Airy disk)

point spread "blob" size: smallest angular size measurable diffraction limit:

$$\theta_{\rm obs} \ge \theta_{\rm min,obs} = \theta_{\rm diff} = 1.22 \frac{\lambda}{D}$$
(1)

objects separated by  $\theta < \theta_{obs}$  smeared into one blob

4

Keck:  $\theta_{diff} = 0.01$  arc sec at 500 nm

diffraction limit sets optimal telescope resolution

but: Earth atmosphere is turbulent – fluctuating density  $\rightarrow$  light path distorted and distortion rapidly fluctuates  $\rightarrow$  light path rapidly fluctuates

 $\rightarrow$  point sources appear to jiggle: "twinkling"

www: twinkle animation

twinkling further smears out point source image

 $\rightarrow \theta_{\text{obs,Keck}} = \theta_{\text{atm}} \ge 1 \text{ arcsec} \gg \theta_{\text{diff}}$ 

*Q*: so obviously, the solution is?

С

go to space!  $\rightarrow$  HST  $\theta_{diff} = 0.05$  arc sec at 500 nm this is the main motivation for Hubble Telescope!  $\rightarrow$  unprecedented angular resolution

### **\*** Magnification

only worthwhile if enough light gathering power & resolution  $\rightarrow$  need to have a sharp image to magnify! magnification set by focal lengths of objective (i.e., main mirror) and eyepiece: magnification =  $f_{\rm obj}/f_{\rm eye}$ 

## **Telescopes: Detectors**

Once light collected, focused, need to detect

• naked eye – just look!

*Q: Problems? other means of detection?* 

# **naked eye** as photodetector benefits:

- readily available, and cheap!
   problems:
- only  $\sim 1\%$  of photons detected!
- can't store image
- only sensitive to small portion of EM spectrum (visible  $\lambda$ s)

### photographic film

better!

- $\bullet$  can collect light  $\rightarrow$  see much dimmer objects
- stores image

but: efficiency still small

only  $\sim few\%$  of incoming  $\gamma$ s registered on film

 $\infty$ 

## • Charged-Coupled Device (CCD)

same technology as digital camera, camcorder! photons  $\rightarrow$  silicon wafer  $\rightarrow e$  knocked out (photoelectric effect)

- moving charges = current
- $\Rightarrow$  CCD converts light  $\rightarrow$  electrical signal

to make image: create *grid/array* of picture elements ("pixels")

great!

 $\star$  digital data  $\rightarrow$  good for computers

 $\star$  efficiency: > 80% of incident photons detected

downside: expen\$ive, hard to make large CCD's

 $\star$  essentially all modern telescopes – HST, Keck – use CCD's

ဖ

# **Field of View**

key telescope property: *field of view* 

- $\rightarrow$  angular area  $\Omega_{fov}$  of celestial sphere visible in each pointing
- naked eye: see almost a full hemisphere  $\Omega_{\rm fov} \approx 2\pi$  steradian =  $2\pi$  rad<sup>2</sup>
- typical modern telescopes, e.g., Hubble, Keck:  $\Omega_{\rm fov} \approx 1$  arcmin  $\times 1$  arcmin = 1 arcmin<sup>2</sup>

iClicker Poll: Rank these from *largest* to *smallest* field of view

A paper towel tube, drinking straw, Hubble telescope



C Hubble telescope, paper towel tube, drinking straw

# Field of View and LSST

typical modern telescopes:  $\Omega_{scope} \approx 1 \operatorname{arcmin}^2$ drinking straw:  $\Omega_{straw} \approx 1 \operatorname{deg}^2 = 3600 \operatorname{arcmin}^2 \approx 3600 \Omega_{scope}!$  $\Rightarrow$  modern telescopes (so far!) have *tiny* fields of view!

Large Synoptic Survey Telescope www: LSST

- site: Cerro Pachón ridge, Andes mountains, Chile
- primary mirror diameter D = 8.4 m: large but not unusual
- field of view  $\Omega_{fov} = 10 \text{ deg}^2$  enormous! requires 3.2 Gigapixel camera! first telescope to have such a large field of view
- Illinois is LSST member; Astronomy, Physics, NCSA involved

 $\stackrel{\vdash}{\sim}$  Q: why is such a large field of view useful? what does this allow?

# **Coming Soon–Cosmic Movie & Wallpaper**

thanks to large field of view LSST can scan entire night sky in a few days! and then repeat this scan for  $\approx 10$  years

result:  $\approx$  1000 deep digital images of *every point* on the southern celestial sphere, spanning 10 years!

Strategy: compare images of same region

- some things won't show any change Q: like? add exposures to get very deep images "The Sky: The Wallpaper"
- other things will show change! Q: like?
   subtract exposures to find & monitor changes
   → reveal celestial variability over timescales ~hours to years
   "The Sky: The Movie"

# **Invisible Astronomy**

before 20th century: astronomy = optical astronomy visible waveband only known form of light

Now: want to take advantage of full EM spectrum  $\rightarrow$  radio, IR, UV, X-ray,  $\gamma\text{-ray}$ 

key issue: atmosphere is not transparent
 to all wavelengths
www: atmospheric transmittance
Q: implications?

radio: large antennas

since  $\lambda$  very large

- $\rightarrow$  need huge collecting area for angular res.
- $\stackrel{\frown}{\omega}$   $\rightarrow$  arrays of antennae

www: VLA, Arecibo

X-ray: don't penetrate atmosphere
→ must go to space
to focus: scatter at glancing angle
detectors: measure energy deposited

www: Chandra, XMM

Also: the cosmos contains more than photons! particles from space already detected

★ neutrinos

cosmic rays (relativistic nuclei and electrons)
 confidently expected but only indirect evidence so far:
 pravitational radiation ("gravity waves")

# The Solar System

## The Solar System

www: Place in the Big Picture

Why study the Solar System?

▷ it's home!

▷ use present to learn about past

 $\rightarrow$  clues for origins of Earth & Sun

▷ help understand origin of exoplanets: compare/contrast

Sociology: traditionally, astronomy divided into study of solar system vs extrasolar objects boundary is artificial, and somewhat loosening now...

Basic Organization www: SS lineup

**Terrestrial planets** (Earth-like): smaller, rocky Mercury, Venus, Earth/Moon, Mars

Asteroid Belt: rocky debris

Jovian planets (Jupiter-like): large, gaseous Jupiter, Saturn, Uranus, Neptune

Kuiper Belt & Oort Cloud: Icy debris

Pluto: in summer 2006, demoted to "dwarf planet"  $\rightarrow$  will discuss what's behind this

Orbital dynamics show clear patterns

all planets & asteroids:

- move in same direction/sense:
   counterclockwise as seen from north
- move in planes close to ecliptic plane ...except Pluto
- move in orbits that are almost circular biggest exception is Pluto

But could it have been otherwise? *Q: What rules does Newton impose on bound orbits?* And note the near-circularity of orbits: imaging placing a planet at distance  $\vec{r}_{init}$ and releasing it with velocity  $\vec{v}_{init}$ 

 $\overrightarrow{w}$  Q: how does orbit depend on  $\overrightarrow{v}$  magnitude, direction? Q: how to adjust  $\overrightarrow{v}$  to get a circular orbit?

# **Newton/Kepler Motion and Initial Conditions**

Given initial position  $\vec{r}_{init}$  and velocity  $\vec{v}_{init}$ trajectory (orbit) completely determined by Newton's laws

- if  $v_{\text{init}} \ge v_{\text{esc}}$ , orbit is *unbound* 
  - $\rightarrow$  leaves solar system on parabolic or hyperbolic orbit
- for  $v_{init} < v_{esc}$ , a *bound* orbit: ellipse or circle...but which one? *if*  $\vec{v}_{init}$  has *any* component along  $\vec{r}_{init}$ i.e., if the velocity is not purely tangential then orbit *must* be an ellipse *but even if*  $\vec{v}_{init} \perp \vec{r}$ , circle not guaranteed if  $v_{init} \neq v_{circ} = \sqrt{GM/r}$ , orbit *must* be an ellipse a circular orbit results if and *only if* speed is *exactly*  $v_{init} = v_{circ}$ !

Lesson: ellipse is "generic" bound orbit

- circular orbits are "fine tuned" and special
  - $\Rightarrow$  the near-circularity of planet orbits cries out for explanation!