Astro 210 Lecture 19 March 4, 2011

Announcements

- HW5 due now
- Planetarium reports: due Monday
- HW6 available, due in 1 week
- Night Observing: last chance next week!
- first clear night next Mon-Fri will be *last* session report forms, info online

Last time:

- the dynamical Earth
- the origin of the seasons

 \vdash

Today: the Earth-Moon system

Craters

Craters caused by meteor/comet impact

- \rightarrow explosion results
- \rightarrow large energy release

Resulting features:

- circular "bowl" cleared out
- in larger craters, central peak ("rebound" of underlying rock)

www: the Moon

 $_{N}$ Q: Why Moon's surface heavily cratered but Earth's not?

Why Moon's surface heavily cratered but Earth's not?

- small meteors burn in E's atmosphere
- ⊳ erosion
- ▷ oceans hide some
- tectonic activity
- volcanos hide some

Some large objects do survive fall

impact on surface

but erosion, geological activity quickly erases evidence

- www: Manicouagan, Canada crater
- www: Clearwater lakes, also Canada
- www: Tunguska, Siberia 1929; exploded in air 1908
- $_{\omega}$ www: Meteor Crater, AZ

Cosmic Calamity!

```
What killed the dinosaurs?
Meteor/comet impact
www: topographical map of Yucatan--note bull's eye
Yucatan crater: \sim 180 km
age (from radioactive <sup>40</sup>K dating): 65 Myrs: when dinos died!
```

caused tidal wave

ignited fires

- * stirred up dust most important
- \rightarrow raised albedo A \rightarrow less sunlight absorbed
- \rightarrow earth cooled
- $_{\scriptscriptstyle \rm P}~\Rightarrow$ plants, animals died

The Moon

Global Properties

$$M=$$
 7.3 $imes$ 10²² kg
 $R=$ 1738 km \sim 1/4 $R_{
m earth}$
 $d_{
m EM}=$ 3.8 $imes$ 10⁵ km \sim 60 R_E

 $ho_{\rm avg} \sim$ 3000 kg m⁻³ ightarrow not big metallic core

 $g_{\text{moon}} = GM/R^2 = 1.6 \text{ m/s}^2 \simeq 1/6 g_{\text{earth}}$

Ю

Tides

www: high/low comparison image

www: online data -- pick a beach to visit!

Q: what is tide period: high to high/low to low?

grav. force changes with distance \rightarrow tidal forces compare forces on mass m at different distances

3

A B

$$F_A = GMm/r^2$$
 $F_B = GMm/(r+d)^2$
 $F_A > F_B$ force tries to pull A and B apart
 \rightarrow tidal force

$$F_{\text{tide}} = F_A - F_B \tag{1}$$

$$= GMm\left(\frac{1}{r^{2}} - \frac{1}{(r+d)^{2}}\right)$$
(2)

$$= GMm \frac{(r+d)^2 - r^2}{r^2(r+d)^2}$$
(3)

$$= GMm \frac{d(2r+d)}{r^2(r+d)^2} = GMm \frac{2dr(1+d/2r)}{r^4(1+d/r)^2}$$
(4)

if
$$d \ll r \Rightarrow F_{\text{tide}} = 2GMm_{\text{tide}}$$

A feels strongest attractionB feels average attractionC feels weakest attraction

so: gravity acclerations $g_C < g_B < g_A$ relative to average $\Delta g = g - g_B$:

$$\Delta g_C < 0 < \Delta g_A$$

The Moon: Orbit

www: lunation animation: always same face! www: far side

Always same side faces us!

demo: lunar globe

iClicker Poll: The Moon & Spin

The Moon always keeps the same face to us What is the Moon's spin period?

- A zero! no spin!
- B nonzero! spin period < orbit period
- C nonzero! spin period = orbit period

nonzero! spin period > orbit period

Moon has $\omega_{orb} = \omega_{spin}$ exactly! "co-rotation"

Why? Tidal interaction and friction

ex: ball rolling in bowl $F_f \neq 0$ after time: stopped $F_f = 0$ \Rightarrow friction drives a system to a state in which frictional forces are no longer active

Earth & Moon deformed by tidal forces sketch imagine $\omega_{spin} > \omega_{orb}$

- *Q:* What is effect on Moon's surface?
- $\stackrel{\vdash}{\sim}$ Q: How will this change the spin & orbit over time?

Tidal stresses on Moon \rightarrow Moon surface constantly deformed Deformed Moon non-spherical: tidal bulges Earth gravity on bulges \rightarrow torque increases Moon orbital angular momentum

repeated stretching/compression \rightarrow friction, heating dissipation \rightarrow evolve to frictionless state: reduces Moon spin angular momentum until $\omega_{spin} = \omega_{orb}$

Note: may take long time! complete for Moon, not for earth!

Earth $\omega_{\text{spin}}^E > \omega_{\text{orb}}$ sketch Earth drags along tidal bulges $F_N > F_F$

Two effects

- 1. slows earth spin (reduces ang. mom.) $dP_{\rm spin}/dt \sim 1.6 \times 10^{-5} {\rm \ s/yr} = 16 {\rm \ s/Myr}$
- 2. adds orbital ang. momentum to moon, (still circular) $(v_c = \sqrt{GM/R} \text{ or } \omega_{\text{orb}} = v_c/R = \sqrt{GM/R^3})$ net effect: earth-moon distance *increases*! $dR/dt \sim 2.3 \text{ cm/yr}$

confirmed by laser ranging measurements! www: laser to Moon

Thus:

- moon recedes!
- Moon closer in past!

The Moon

Global Properties

$$\begin{split} M &= 7.3 \times 10^{22} \text{ kg} \\ R &= 1738 \text{ km} \sim 1/4 \text{ } R_{\text{earth}} \\ d_{\text{EM}} &= 3.8 \times 10^5 \text{ km} \sim 60 R_E \\ diagram: Earth-Moon to scale \\ \rho_{\text{avg}} \sim 3000 \text{ kg m}^{-3} \\ \rightarrow \text{ not big metallic core} \end{split}$$

 $g_{\text{moon}} = GM/R^2 = 1.6 \text{ m/s}^2 \simeq 1/6 g_{\text{earth}}$

The Moon: Surface Features

highlands: lighter in color, heavily cratered
 www: Apollo 17 in highlands (mountains made by impacts)

* maria - "seas" (singular: mare): dark plains
www: Mare Imbrium large scale
www: maria/highlands comparison
smooth: fewer craters, made of volcanic rock Q: how do we
know?
formed by lave flows

formed by lava flows

ц Ц

```
* craters
cover surface
occur in all sizes, > 20km to microscopic
www: Mare Oriental
www: maria--overlapping craters
```

Right After the One Small Step

(Garbled) the surface is fine and powdery. I can kick it up loosely with my toe. It does adhere in fine layers, like powdered charcoal, to the sole and sides of my boots. I only go in a small fraction of an inch, maybe an eighth of an inch, but I can see the footprints of my boots and the treads in the fine, sandy particles.

> Niel A. Armstrong July 20 1969 *Mare Tranquillitatis*–Sea of Tranquility

* "soil" regolith = "rock blanket"
www: footprint
www: Real Audio Armstrong--start at 3:35
dust, rock fragments
accumulated debris from many impacts

 \star other tips for tourists:

- \bullet no atmosphere \rightarrow no UV, X-ray protection
- slow rotation → long "days" huge day/night temp diff: 370K vs 125 K Q: why?