> Astro 210
> Lecture 19
> March 4, 2011

Announcements

- HW5 due now
- Planetarium reports: due Monday
- HW6 available, due in 1 week
- Night Observing: last chance next week!
- first clear night next Mon-Fri will be last session report forms, info online

Last time:

- the dynamical Earth
- the origin of the seasons

Today: the Earth-Moon system

Craters

Craters caused by meteor/comet impact
\rightarrow explosion results
\rightarrow large energy release

Resulting features:

- circular "bowl" cleared out
- in larger craters, central peak ("rebound" of underlying rock)
www: the Moon
n Q: Why Moon's surface heavily cratered but Earth's not?

Why Moon's surface heavily cratered but Earth's not?
\triangleright small meteors burn in E's atmosphere
\triangleright erosion
\triangleright oceans hide some
\triangleright tectonic activity
\triangleright volcanos hide some

Some large objects do survive fall impact on surface
but erosion, geological activity quickly erases evidence www: Manicouagan, Canada crater
www: Clearwater lakes, also Canada
www: Tunguska, Siberia 1929; exploded in air 1908
ω^{ω} www: Meteor Crater, AZ

Cosmic Calamity!

What killed the dinosaurs?
Meteor/comet impact
www: topographical map of Yucatan--note bull's eye
Yucatan crater: ~ 180 km
age (from radioactive ${ }^{40} \mathrm{~K}$ dating): 65 Myrs: when dinos died!
caused tidal wave
ignited fires

* stirred up dust - most important
\rightarrow raised albedo $A \rightarrow$ less sunlight absorbed
\rightarrow earth cooled
ค \Rightarrow plants, animals died

The Moon

Global Properties

$$
\begin{aligned}
& M=7.3 \times 10^{22} \mathrm{~kg} \\
& R=1738 \mathrm{~km} \sim 1 / 4 R_{\text {earth }} \\
& d_{\mathrm{EM}}=3.8 \times 10^{5} \mathrm{~km} \sim 60 R_{E}
\end{aligned}
$$

$\rho_{\text {avg }} \sim 3000 \mathrm{~kg} \mathrm{~m}^{-3}$
\rightarrow not big metallic core
$g_{\text {moon }}=G M / R^{2}=1.6 \mathrm{~m} / \mathrm{s}^{2} \simeq 1 / 6 g_{\text {earth }}$

Tides

www: high/low comparison image
www: online data -- pick a beach to visit!

Q: what is tide period: high to high/low to low?
grav. force changes with distance \rightarrow tidal forces compare forces on mass m at different distances

$$
A B
$$

$F_{A}=G M m / r^{2} \quad F_{B}=G M m /(r+d)^{2}$
$F_{A}>F_{B}$ force tries to pull A and B apart
\rightarrow tidal force

$$
\begin{align*}
F_{\mathrm{tide}} & =F_{A}-F_{B} \tag{1}\\
& =G M m\left(\frac{1}{r^{2}}-\frac{1}{(r+d)^{2}}\right) \tag{2}\\
& =G M m \frac{(r+d)^{2}-r^{2}}{r^{2}(r+d)^{2}} \tag{3}\\
& =G M m \frac{d(2 r+d)}{r^{2}(r+d)^{2}}=G M m \frac{2 d r(1+d / 2 r)}{r^{4}(1+d / r)^{2}} \tag{4}
\end{align*}
$$

if $d \ll r \Rightarrow F_{\text {tide }}=2 G M m \frac{d}{r^{3}}$

Earth in isolation

Earth in field of Moon
A feels strongest attraction
B feels average attraction
C feels weakest attraction
so: gravity acclerations $g_{C}<g_{B}<g_{A}$
relative to average $\Delta g=g-g_{B}$:

$$
\Delta g_{C}<0<\Delta g_{A}
$$

The Moon: Orbit

www: lunation animation: always same face!
www: far side
Always same side faces us!
demo: lunar globe

iClicker Poll: The Moon \& Spin

The Moon always keeps the same face to us
What is the Moon's spin period?

A zero! no spin!

B nonzero! spin period $<$ orbit period

C nonzero! spin period $=$ orbit period

D nonzero! spin period $>$ orbit period

Moon has $\omega_{\text {orb }}=\omega_{\text {spin }}$ exactly!
"co-rotation"

Why? Tidal interaction and friction
ex: ball rolling in bowl $F_{f} \neq 0$
after time: stopped $F_{f}=0$
\Rightarrow friction drives a system to a state in which frictional forces are no longer active

Earth \& Moon deformed by tidal forces
sketch
imagine $\omega_{\text {spin }}>\omega_{\text {orb }}$
Q: What is effect on Moon's surface?
$\stackrel{\rightharpoonup}{\bullet}$
Q: How will this change the spin \& orbit over time?

Tidal stresses on Moon \rightarrow Moon surface constantly deformed Deformed Moon non-spherical: tidal bulges
Earth gravity on bulges \rightarrow torque
increases Moon orbital angular momentum
repeated stretching/compression \rightarrow friction, heating
dissipation \rightarrow evolve to frictionless state:
reduces Moon spin angular momentum
until $\omega_{\text {spin }}=\omega_{\text {orb }}$

Note: may take long time!
complete for Moon, not for earth!

Earth $\omega_{\text {spin }}^{E}>\omega_{\text {orb }}$
sketch
Earth drags along tidal bulges
$F_{N}>F_{F}$

Two effects

1. slows earth spin (reduces ang. mom.)

$$
d P_{\mathrm{spin}} / d t \sim 1.6 \times 10^{-5} \mathrm{~s} / \mathrm{yr}=16 \mathrm{~s} / \mathrm{Myr}
$$

2. adds orbital ang. momentum to moon, (still circular) $\left(v_{c}=\sqrt{G M / R}\right.$ or $\left.\omega_{\mathrm{orb}}=v_{c} / R=\sqrt{G M / R^{3}}\right)$ net effect: earth-moon distance increases!
$d R / d t \sim 2.3 \mathrm{~cm} / \mathrm{yr}$
confirmed by laser ranging measurements! www: laser to Moon

Thus:

- moon recedes!
$\stackrel{\rightharpoonup}{\omega}$
- Moon closer in past!

The Moon

Global Properties
$M=7.3 \times 10^{22} \mathrm{~kg}$
$R=1738 \mathrm{~km} \sim 1 / 4 R_{\text {earth }}$
$d_{\mathrm{EM}}=3.8 \times 10^{5} \mathrm{~km} \sim 60 R_{E}$
diagram: Earth-Moon to scale
$\rho_{\text {avg }} \sim 3000 \mathrm{~kg} \mathrm{~m}^{-3}$
\rightarrow not big metallic core
$g_{\text {moon }}=G M / R^{2}=1.6 \mathrm{~m} / \mathrm{s}^{2} \simeq 1 / 6 g_{\text {earth }}$

The Moon: Surface Features

* highlands: lighter in color, heavily cratered www: Apollo 17 in highlands (mountains made by impacts)
* maria - "seas" (singular: mare): dark plains
www: Mare Imbrium large scale
www: maria/highlands comparison
smooth: fewer craters, made of volcanic rock Q : how do we know?
formed by lava flows
* craters
cover surface
occur in all sizes, $>20 \mathrm{~km}$ to microscopic
www: Mare Oriental
www: maria--overlapping craters

Right After the One Small Step

(Garbled) the surface is fine and powdery. I can kick it up loosely with my toe. It does adhere in fine layers, like powdered charcoal, to the sole and sides of my boots. I only go in a small fraction of an inch, maybe an eighth of an inch, but I can see the footprints of my boots and the treads in the fine, sandy particles.

Niel A. Armstrong
July 201969
Mare Tranquillitatis-Sea of Tranquility

* "soil" regolith = "rock blanket"

WWW: footprint
wWw: Real Audio Armstrong--start at 3:35
dust, rock fragments
accumulated debris from many impacts

* other tips for tourists:
- no atmosphere \rightarrow no UV, X-ray protection
- slow rotation \rightarrow long "days"
huge day/night temp diff: 370K vs 125 K
Q : why?

