Astro 210 Lecture 20 March 7, 2011

Announcements

- Planetarium reports due today
- HW6 due at start of class Friday typos discovered, erratum & corrected questions posted
- Night Observing: last chance this week!
- first clear night today-Thursday will be *last* session report forms, info online

Last time: the Moon

www: global overview

highlands vs maria: Q: what are these? how are they different?
 Q: Why this difference?

Lunar Cratering and Solar System Impact History

highlands: lighter in color, heavily cratered maria smooth: fewer craters

Why the difference?

- ★ impactor bombardment random but same over all Moon large regions cannot "hide"
- * cratering differences immediately show maria younger!
- **★** combine with lunar rock composition (maria basaltic)
 - \rightarrow maria formed by lava flows due to large impacts
 - \rightarrow younger surface \rightarrow fewer craters

Implications

N

- violent impacts common in the past
- \bullet fewer impacts after maria formed \rightarrow bombardment has slowed
- can use cratering counts to deduce impact history
 - \Rightarrow huge bombardment rate initially

The Moon: Origin

Earth & Moon similar in composition of crust, different in core

- Fission model ("separated at birth") : moon spun out from rapidly rotating earth
- Binary ("Sister") model earth and moon formed together as binary system
- Capture model
 "vagabond" moon gravitationally captured by earth
- giant impact model
 Moon created in collision of Mars-sized object with early Earth

Q: pros, cons of each?

ω

• Fission model ("separated at birth") :

unlikely: ang mom problem-Earth wouldn't rotate fast enough

- Binary ("Sister") model unlikely: where do differences come from?
- Capture model unlikely: where do similarities come from?
- giant impact model "least unlikely"—accounts for both differences and similarities \rightarrow early solar system a violent place!

▹ www: impact movie

Moon Wrapup

www: image comparison

Q: compare/contrast?

Venus

Properties

 M, R, ρ_{avg} almost identical to Earth's: "sister planet" \rightarrow probably very Earth-like initially now: hellish!

atmosphere: thick

mostly CO₂; clouds of concentrated sulfuric acid surface pressure $P_0 = 90$ atm $= 90 \times$ Earth

surface T = 750 K = 380 C = 800 F; melts lead!

www: Venera 9 & 10 comparison

www: Venera 13 image

 $^{\circ}$ landers lasted for $\sim 1-2$ hr, then got cooked found: flat rocks, basaltic soil \rightarrow volcanic activity

```
other evidence for "geo" logical activity on Venus:
www: Guinevere plains---stretching forces from mantle
www: Venus craters
crater counts similar to Earth-a few 100 Myr old
but no plates! Has to be resurfaced some other way, perhaps
active volcanism?
www: radar map: volcano lava flows?
```

Note: $T_{\text{surface}} \gg T_{\text{eq}}(a_{\text{Venus}}) \approx 230 \text{ K}$ from our master equation \rightarrow i.e., much *hotter* than expected *equilibrium temperature* Q: Why so hot?

Greenhouse Effect

basic idea: atmosphere traps thermal energy surface region at different T than top of atmosphere in HW6 you work this out in detail note: important for Earth and Mars too

Consider radiative energy flows
incoming: sunlight-visible wavelengths, atm transparent
Venus surface not dark!
outgoing: surface thermal (BB) emission: IR
but CO₂ in atm blocks IR, absorbs energy
⇒ atmosphere acts like blanket

 \odot

iClicker Poll: CO₂ and Surface Temperature

Imagine Sun's radiation and Venus orbit fixed but more CO_2 added to Venus' atmosphere

What would be the effect on Venus' surface temperature T_s ?

A T_s stays the same

Venus: probably initially cooler, had liquid water(?) note-early Sun was 30% dimmer!

if so, CO_2 dissolved in oceans, rocks note: CO_2 in Earth rocks, oceans is enough for 70 atm! ...just like Venus!

Now imagine: watery Venus heated a bit Q: What is effect of heating on atmosphere? on temperature?

```
if early water-bearing Venus heated, positive feedback loop:
Heat \rightarrow surface T \uparrow
```

```
\rightarrow H_20 evap, atm \rightarrow CO_2 released as well
```

```
\rightarrow repeat until all H<sub>2</sub>O evaporated!
```

```
also: H_2O molecules lighter than CO_2
```

```
\rightarrow all H_2O evaporated
```

```
\rightarrow go to upper atm
```

```
\gamma + H_2O \rightarrow H + OH, H escapes
```

```
\Rightarrow water lost! – warming irreversible
```

```
\rightarrow runaway greenhouse effect
```

Mars

Vital Statistics: $R \simeq 1/2 R_{\text{Earth}}$ $M \simeq 10\% M_{\text{Earth}}$ $\rho_{\text{avg}} = 3900 \text{ kg/m}^3 < \text{Earth} \rightarrow \text{smaller core}$

atmosphere thin: $P_0 \sim 1/200$ Earth atm \rightarrow liquid water cannot exist! sublimates, freezes composition: heavy species–95% CO₂, $\sim 2\%$ N₂, Ar

- smaller mass \rightarrow more escape
- no ocean to absorb CO₂

12

```
surface temperature: T \sim 190-240 K polar caps: frozen water, CO<sub>2</sub>; cap sizes vary: seasons!
```

```
soil – iron rich (red color \rightarrow iron oxide=rust)
```

Water on Mars

today: ice-polar caps, permafrost in soil

but much evidence for liquid water in past!

www: outwash ''river delta''

13

- "arroyos" river-like channels (run downhill, show sandbars!)
- Martian meteorites: were wet when made
- Mars Global Surveyor: flat basin in N. hemisphere w/ "coastline" features

channels stop here \rightarrow ancient ocean?

- gullies-small but uneroded \rightarrow recent 2005-new gully created - confirms active flows
- Mars Phoenix Lander 2008: excavation exposed white material
- gone in 1 day: timescale for water ice \rightarrow vapor (sublimation)

Life on Mars?

Water \rightarrow maybe life? No clear evidence

But: ancient Mars meteorite (discovered on Earth)
Q: how did it get here? how know it's Martian?
claimed to have fossil bacteria
www: microscopic image--bacteria-like figures?
→ perhaps life long ago?

Q: even if Mars had bacterial life–why is this a Big Deal?