> Astro 210
> Lecture 21
> March 9, 2011

Announcements

- Friday only: class moved for Engineering Open House meet in Ceramics Bldg room 218
- HW6 due at start of class next time typos discovered, erratum \& corrected questions posted
- Night Observing: last chance this week! first clear night today-Thursday will be last session report forms, info online

」 Last time: terrestrial planets

Life on Mars?

Water \rightarrow maybe life?
No clear evidence

But: ancient Mars meteorite (discovered on Earth)
Q: how did it get here? how know it's Martian?
claimed to have fossil bacteria
www: microscopic image--bacteria-like figures?
\rightarrow perhaps life long ago?

Q: even if Mars had bacterial life-why is this a Big Deal?

Jupiter

prototype for Jovian planets
mass: $M=1.9 \times 10^{27} \mathrm{~kg}=0.1 \% M_{\odot} \simeq$ sum of rest of planets radius: about $10 R_{\text {Earth }}$
$\rho_{\text {avg }} \simeq 1,300 \mathrm{~kg} / \mathrm{m}^{3} \ll \rho_{\text {rock }}$ for sure isn't rocky!
composition: H 79%, He $20 \%, 1 \%$ other \rightarrow very similar to sun color: ammonia clouds
spin: rapid, 9hr 50min \rightarrow oblate ("M\&M shape") \rightarrow atmospheric circulation!
www: Jupiter
high pressure regions: zones
low pressure regions: belts
Great Red Spot: long-lived storm
www: Red Spot
www: red spot animation

Jupiter Interior

www: Giant planet interiors
no solid surface!
gaseous atmosphere becomes increasingly dense until compressed liquid H_{2} (hi pressure) then liquid H metal, probably rocky core (differentiation of heavy elements)

Saturn

Rings
not solid! many small icy rocks, dust
each has individual circular Keplerian orbit
\rightarrow rings have different periods, speeds depending on distance
\sim few $\times 100$ m thick: razor-thin!
aligned with equator

Cassini-Huygens: ongoing mission
spectacular views of rings
detailed data on ring structure, interaction with moons
www: Cassini images, movies

iClicker Poll: Saturn's Rings

Saturn's rings made of orbiting particles
What is pattern of orbit periods, from innermost to outermost?

A $P_{\text {inner }}<P_{\text {mid }}<P_{\text {outer }}$
B $\quad P_{\text {inner }}=P_{\text {mid }}=P_{\text {outer }}$
C $P_{\text {inner }}>P_{\text {mid }}>P_{\text {outer }}$
${ }^{\circ}$ So: why does Saturn have rings? what gives them their structure?

Tidal Forces: Roche Limit

consider object held together by gravity alone "self-gravitating" mass m, size r
think: "rubble pile" held together by its own gravity put in gravitational field of larger object M
tidal forces of M in competition with self-gravity Q : why? when do tidal forces tear it apart?

how close is too close?

competition: inward self-gravity vs. outward tides

- grav. force on test particle at surface is $F_{\mathrm{g}}=G m m_{\mathrm{test}} / r^{2}$
- large body of mass \mathcal{M} at d exerts tidal force
$F_{\mathrm{t}}=2 G \mathcal{M} m_{\text {test }} r / d^{3}$
tides and gravity equal when $G m m_{\text {test }} / r^{2}=2 G \mathcal{M} m_{\text {test }} r / d^{3}$, or

$$
\begin{equation*}
d^{3}=2 \frac{\mathcal{M}}{m} r^{3} \tag{1}
\end{equation*}
$$

if densities of similar

$$
\begin{equation*}
\frac{\mathcal{M}}{R^{3}} \approx \frac{m}{r^{3}} \tag{2}
\end{equation*}
$$

and so

$$
\begin{equation*}
d^{3}=2 R^{3} \Rightarrow d=2^{1 / 3} R=1.3 R \tag{3}
\end{equation*}
$$

more detailed analysis: $d=2.4 R$
this is "Roche limit"; closer \rightarrow torn apart

Saturn: rings inside Roche limit, moons outside \rightarrow rings are "protomoon" that never coalesced
\rightarrow more likely: captured moon
note: all Jovian planets have rings!
www: Jupiter rings (Voyager, IR)
note: we are inside the Roche limit for Earth!
Q : why don't we get ripped apart?

Debris

in addition to planets
Solar system contains large amount of smaller junk

- rocky debris: asteroids
- icy debris: comets

Debris I: Asteroids

Properties

"minor planets" number $\sim 10^{5}-10^{6}$
masses: total $\sim 10^{-5} M_{\text {Earth }}$
sizes: poorly known, but go up to $\sim 300 \mathrm{~km}$
composition: solid (no gasses, ices)

- 5/6 are "C-type" carbon rich
$\stackrel{\rightharpoonup}{\circ}$
- $1 / 6$ rea "S-type" iron rich
Q : how do we know this?

