Astro 210 Lecture 22 March 11, 2011

Announcements

HW6 due

 \vdash

- Night Observing: arrgh! this week a bust
 last chance next week!
 first clear night Mon, Tue, or Wed will be last session report forms, info online
- Hour Exam 1: mea culpa! scores available by Sun nite exams handed out Monday

Last time: Jovian planets

Today: solar system debris, and Pluto

Debris

in addition to planets Solar system contains large amount of smaller junk

- rocky debris: asteroids
- icy debris: comets

Debris I: Asteroids

Properties

"minor planets" number $\sim 10^5-10^6$ masses: total $\sim 10^{-5} M_{\rm Earth}$ sizes: poorly known, but go up to \sim 300 km composition: solid (no gasses, ices)

- 5/6 are "C-type" carbon rich
- 1/6 are "S-type" iron rich

Q: how do we know this?

Asteroid Orbits

asteroids orbit Sun \rightarrow must follow Kepler's laws (of course!) wide variation in a, ebut average $a \simeq 2.8 \text{ AU}$ → between Mars & Jupiter average eccentricity e < 0.1: nearly circular most orbit planes close to ecliptic Inner Solar System in real time www:

Near-Earth objects www:

if cross Earth's orbit, enter atmosphere: meteorite

Leonids : WWW

fireball www:

 ω

Note: meteorites on view in Geology—extraterrestrial matter!

LSST: will identify > 90% of near-Earth asteroids > 140 m

what do asteroids look like? From ground, see only largest but now have visited some (on the way to outer SS)

www: Gaspara

www: Ida & Dactly

Near Earth Asteroid Rendezvous intercept near-earth asteroid 433 Eros

S-type: stony-iron

large: 35 km long, 14 km wide-Chicago

"potato shaped"

www: NEAR image of 433 Eros

www: NEAR movie

hints of stratification—broken from (much) larger object?

Debris II: Comets

www: Hale-Bopp, Hyakutake, Ikea-Seki

last year: brightest comet in decades! www: McNaught

Comet Structure: "dirty snowball" nucleus: ~ 10 km solid: ices (H₂O, CO₂, CH₄), embedded dust grains

very elliptical orbits: changing $r \to \text{changing } T$ far from Sun: completely frozen as approach: ice $\to \text{vapor (sublimation)}$ dust, gas released $\to 10^6$ km coma www: HST Hale-Bopp: coma & jets, nucleus unresolved pressure from sunlight & solar "wind" of particles $\to \text{tails}$: Ion, dust

G

ion tail: small, low-momentum particles

- \rightarrow carried by solar wind
- → points away from Sun

dust tail: larger, higher-momentum particles

- \rightarrow retain \vec{v} component in comet direction
- → non-radial arc tracing comet path

NASA Mission: Stardust

at 1.86 AU from Sun (2.6 AU from earth) fly by comet P/Wild 2, collect samples of dust, gas returned to earth last year: parachute, caught by airplane "fresh" comet, hasn't lost all of its original material

- → learn about interstellar dust grains
- → output of stars and building blocks of planets

Comet Orbits

```
"Long Period": P > 10^5 yr
  \rightarrow a > 2000 \text{ AU!}
  all orientations \rightarrow not just ecliptic
  Oort Cloud
  spherical comet "reservoir" at 3000-100,000 AU
  not observed directly!
  probably did not form there....
  ejected by Jovian planets in early SS?
   "Short Period": P < 200 \text{ yr}
  lie in ecliptic
  → not from Oort cloud → Kuiper Belt
a = 30 - 100 \text{ AU}
        Outer solar system sketch
  www:
```

first Kuiper belt object detected in 1992 a.k.a., *Trans-Neptunian* objects; today, tally is hundreds typically \sim few% - 10% size of Pluto probably formed where they are now estimates: 70,000 KBO's total mass $\sim 0.1 M_{\rm Earth}$

also: some comets strongly deflected, have orbits with very small perihelion (i.e., very close to Sun).

www: sun-grazing comets

Pluto

Orbit

a = 39.5 AU, P = 285 yr, e = 0.25 - largest for planet

Properties

 $\rho_{\rm avg} \simeq 2000 \ {\rm kg/m^3} \rightarrow {\rm ice}, \ {\rm rock \ surface} \colon \ {\rm N_2 \ ice}$

atm: very thin, $P = 10^{-5}$ earth

www: HST image

Pluto's Moon: Charon – together a "double planet" system Mass $M_{\rm P}+M_{\rm C}=0.0024M_{\rm Earth};~M_{\rm C}\simeq 0.12M_{\rm P}$ $R_{\rm P}=720$ km, $R_{\rm C}=395$ km both spins, orbit have same period:

- system tidally locked into co-rotation
- each keeps same face to other

similar to comet nucleus, Kuiper Belt object Pluto: smallest planet or largest KBO?

Pluto: History and Status

Clyde Tombaugh (1930): Pluto discovered in sky scan totally unlike its outer planet neighbors

1930's-1950's: Kuiper belt idea proposed 1990's: Kuiper belt objects discovered 2002-present: more large outer solar system objects

- Quaoar ("Kwawar"): $\approx 60\%$ Pluto size
- Sedna: $\approx 70\%$ Pluto size
- "Xena" → Eris: larger than Pluto!!
 preliminary (Nov 2010) data: maybe not! but for sure more massive

all these are spherical rocky iceballs largest of huge population of object beyond Neptune orbits more elliptical than planets, but still \approx in ecliptic \rightarrow "transneptunian objects" or Kuiper belt objects smaller Kuiper belt members sometimes scatterer \rightarrow comets

To Be Or Not To Be

2006: International Astronomical Union redefines "planet" Pluto demoted to "dwarf planet" along with Ceres (asteroid belt), and KBO's Eris + 2 others Revise you vote—or not: Is Pluto a full-fledged, non-dwarf planet?

- A No way! Good riddance!

 And I've got my eye on you, Neptune!
- B Umm, probably not?
- C Umm, probably so?
- Yes way! Pluto was robbed! Long live Pluto!