Astro 210 Lecture 22 March 11, 2011

Announcements

- HW7 due
- Night Observing: last chance this week! first clear night today, Tue, or Wed will be *last* session due to time change, hours now 8–10 pm report forms, info online
- Hour Exam 1: scores & stats posted last night exams handed out today

Last time: finished solar system tour

Н

Today: build theory of solar system origin

The Age of the Earth & Solar System

Very useful, important to know age of Earth, other solar system bodies

"gold-plated" method: radioactive dating

Radioactivity

recall: nucleus = collection of protons and neutrons not all atomic nuclei are stable! some spontaneously decay!

why? rough rule of thumb:

ω

nuclei "prefer" #n and #p roughly equal

if too many extra n or $p \rightarrow$ change to make more even

example: Carbon-14 ${}^{14}C = \boxed{6p \ 8n}$: 2 extra $n \rightarrow$ unstable, radioactive decay to Nitrogen-14: ${}^{14}N = \boxed{7p \ 7n}$; has equal n and p, stable how? change one $n \rightarrow p$ *Q: why can't this be all that occurs in decay? Q: how to predict when one* ${}^{14}C$ *nucleus decays?* radioactive decays: to try to balance n and pdecays can change $n \rightarrow p$, or $p \rightarrow n$ but note: electric charge $(p) \neq$ charge(n) \rightarrow need another charged particle-electron! turns out: yet another particle too (neutrino)

for the case $n \rightarrow p$, really have

$$n \to p + e + \nu_e \tag{1}$$

where ν_e is a (electron-type) neutrino (more on these later)

note:

- at deeper level, decay is quark change $d \rightarrow u + e + \nu_e$
- \bullet decay produces have high kinetic energy \rightarrow heat

Radioactive Decay Law

When will a given nucleus decay? Trick question! In subatomic quantum world, decays are *random*! cannot predict when individual particle will decay! **But** can predict very accurately how a large sample will decay www: decay simulations

The rule: starting with n_0 radioactive nuclei at time t = 0decay rate \propto number n of nuclei still alive $dn/dt = -\lambda n$

w/ "decay constant" λ , depends on isotope

$$\frac{dn}{n} = -\lambda dt \tag{2}$$

$$n\left(\frac{n}{n_0}\right) = -\lambda t \tag{3}$$

СЛ

$$n(t) = n_0 e^{-\lambda t} \tag{4}$$

exponential decay law

fixed time for half of present sample to decay: half-life

rewrite:

 $n = n_0 \ 2^{-t/t_{1/2}} = n_0 \ (e^{\ln 2})^{-t/t_{1/2}} = n_0 e^{-\lambda t}$ \rightarrow half life and decay rate are inverses: $t_{1/2} = \ln 2/\lambda$

Radioactive Dating

radioactive material can be age-dated:

- ★ decay rate predictable: "clock"
- \star both undecayed "parents" and decay "daughters" observable
 - \rightarrow can infer amount of decay
- \star some nuclei have very long $t_{1/2} \rightarrow$ can measure very old ages

Example: Potassium-Argon dating Demo: banana

 $^{\circ}~^{40}{\rm K}$ is rare, unstable potassium isotope decays to argon $^{40}{\rm K} \rightarrow {}^{40}{\rm Ar}$ with $t_{1/2}=1.3\times 10^9~{\rm yr}$

Worked Example

Experiment: in rock, measure ratio $n(^{40}\text{Ar})/n(^{40}\text{K}) = 10.6$

assume $n(^{40}Ar) = 0$ at rock formation Q: why? \rightarrow what is age t of rock?

7

1. find
$$n_0({}^{40}\mathsf{K})$$
:

$$\frac{n({}^{40}\mathsf{Ar})}{n({}^{40}\mathsf{K})} = \frac{n_0({}^{40}\mathsf{K}) - n({}^{40}\mathsf{K})}{n({}^{40}\mathsf{K})} = 10.6$$
(5)
 $\rightarrow n_0({}^{40}\mathsf{K})/n({}^{40}\mathsf{K}) = 11.6$

2. now get age:

$$n_0({}^{40}\text{K})/n({}^{40}\text{K}) = 2^{t/t_{1/2}}$$

 $\Rightarrow \log_{10}(n_0/n) = t/t_{1/2}\log_{10} 2$
 $t = \frac{\log_{10}(n_0/n)}{\log_{10} 2} t_{1/2} = 4.6 \times 10^9 \text{ yr}$

(6)

Ages of Earth and the Solar System

Earth

 40 K – 40 Ar clock "reset" whenever rocks melted Q: why?

- gives a range of dates for earth rocks *Q*: why does this make sense?
- oldest earth rocks give

$$t(ext{oldest rocks}) pprox 4.3 imes 10^9 ext{ yr } \leq t_{ ext{earth}}$$

(7)

Solar System

radioactive dating show: **meteorites** oldest objects strictly speaking: give *lower bound* to solar system age practically: likely formed quickly \rightarrow give SS age

 ∞

 $t_{\rm SS} = 4.6 \times 10^9 \text{ yr} = 4,600,000,000 \text{ yr} = 4.6 \text{ billion years!}$ (8)

Origin of the Solar System

theory building! recall: geocentric/heliocentric theories...

Input SS data, laws of physics

Output: Model

6

sequence of events, predictions for evolution up to present

patterns in the solar system to be explained by a theory of solar system origin *Q: similarities? differences?*

Solar System Data to be Explained

orbits, spins

- planet orbits in ecliptic plane
- rough spin/orbit alignments
- but some spins misaligned

Terrestrial/Jovian differences:

composition

location

size

spacing

 $_{\rm tot}$ debris: comets, asteroids

Theory of Solar System Origin: Protosolar Nebula

stars born in cold gas & dust clumps: molecular clouds
Q: what's dust, in astro context?
www: HST Eagle Nebula

Initial protosolar material a small parcel of larger cloud

- cold gas & dust
- spinning: net angular momentum $\neq 0$ Q: why is $\vec{L} \neq 0$ a reasonable assumption?

For simplicity: imagine first a cold cloud with *zero* spin

i.e., *zero* angular momentum

Q: forces on particles in cloud?

Q: response of particles to these forces?

11

Q: why is coldness important for this to work?

Gravitational Collapse

ignoring spin:

particles in cold cloud feel forces of

- gravity
- thermal pressure

but if cloud is cold: T low, pressure $P = \rho kT/m_{\text{particle}}$ small \rightarrow only important force is gravity

diagram: cloud \rightarrow collapse gravity \rightarrow inward motion \rightarrow denser \rightarrow stronger gravity \rightarrow runaway! "gravitational collapse"

12

Q: why doesn't collapse continue until all matter \rightarrow point?

iClicker Poll: Contraction of a Spinning Swarm

Consider a swarm of particles, spinning around an axis Which is easier?

- A moving a particle *parallel* to spin ↓ toward midplane
- B moving a particle *perpendicular* to spin
 - \leftarrow toward spin axis
- C both motions equally easy

Nebular Collapse: Birth of Sun and Disk

indeed, most matter compressed \rightarrow central "proto-Sun"

but real pre-stellar clouds are clumpy parts of larger nebulae \rightarrow turbulent motions

 \rightarrow clumps have random but nonzero spins: $\vec{L}_{init} \neq 0$

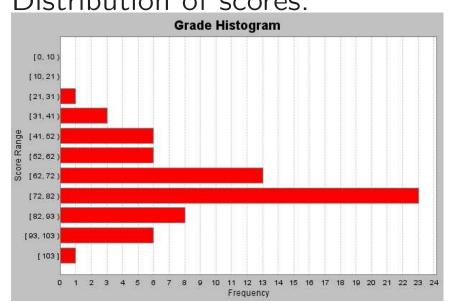
spin \rightarrow axial but not spherical symmetry describe with cylindrical coordinates (r, θ, z)

 \rightarrow collapse not spherical

angular momentum "centrifugal barrier" along R, but not z

 \Rightarrow collapse easier along z

 \Rightarrow protoplanetary disk


diagram: disk

14

disk \rightarrow planet & debris orbit planes, spin axes

Hour Exam 1

- Scores and statistics posted on Compass.
- median = 74, std deviation = spread around mean = 16.8
- Solutions posted online.

Distribution of scores:

15

Recall:

- this exam worth 10% of final grade
- equivalent to 2 HW grades