Astro 210 Lecture 24 March 16, 2011

Announcements

- HW7 available, due next time
- office hours-me: after class; TA: 10:30-11:30 tomorrow
- Night Observing: last chance this week! if tonight is clear, it will be *last* session due to time change, hours now 8–10 pm report forms, info online

Last time: started origin of solar system

- starting point: molecular cloud Q: what's that? ingredients?
- gravitational collapse Q: what's that?

⊢

Today: from collapse to planets

Nebular Collapse: Birth of Sun and Disk

in gravitational collapse most matter compressed \rightarrow central "proto-Sun"

but real pre-stellar clouds are clumpy parts of larger nebulae

- \rightarrow turbulent motions
- \rightarrow clumps have random but nonzero spins: $\vec{L}_{init} \neq 0$

 \rightarrow collapse not spherical

angular momentum "centrifugal barrier" resists motion toward spin axis

but not along spin axis

- \Rightarrow collapse easier along axis
- \Rightarrow protoplanetary disk

diagram: disk

Ν

disk \rightarrow planet & debris orbit planes, spin axes

Protoplanetary Disk

protosolar material with highest angular momentum "spared" from going into Sun \rightarrow remains as orbiting disk disk ingredients: mostly H and He gas with "sprinkle" (~ 2% by mass) of microscopic dust disk motion: feels gravity of proto-Sun \rightarrow moves in Keplerian orbits

non-circular velocity components \rightarrow 0 Q: why?

due to T drop with distance R from Sun: gas ρ , matter state (presence of ices) change with R Q: how? what physical effects important for ice formation?

disk velocities: matter interactions occur

with non-circular (i.e., radial) velocity components

- i.e., elliptical radial motions lead to collisions/heating: friction
- frictional drag forces drive radial motions to zero
- protosolar disk circularized \rightarrow low-eccentricity planet orbits

temperature gradients and disk structure

hotter near (proto)Sun, cooler farther away

 higher gas presser closer: gas disk "puffier" nearby what about solids? dust, ice?

key: condensation gas \rightarrow solid

- rocks, metals $T_{\rm cond} \sim 1000 2000$ K high!
- ice: $T_{\text{cond}} \sim 100 200 \text{ K low!}$

Q: so what does this mean for what kinds of solids form where?

water/ice "snow" line at $R_{snow} \sim 3$ AU: Inner/Outer boundary!

- < R_{snow}: only dust (rocky material) can exist as a solid (no ice): limited raw material → small, rocky planets formed there
- > R_{snow} : lighter elements (water, CO₂) can also exist as a solid (along with dust)
- \rightarrow more raw material available \rightarrow larger protoplanets \Rightarrow origin of Jovian/terrestrial composition differences!

iClicker Poll: Fossils of the Protosolar Nebula

Which is/are "fossil(s)" of solar nebula disk formation?

- A all planets orbit planes are close to ecliptic plane
- B all planets move in the same direction
- C Venus spin is retrograde ↑_{orbit}↓_{spin}
- D both (a) and (b)

E	all	of	(a),	(b),	and	(C)
---	-----	----	------	------	-----	-----

Assembling the Planets: Challenges

Goal of Solar Nebula Theory:

- start with smooth, gas-dominated protosolar disk smoothly laced with with microscopic dust/ices
- explain physically-motivated steps leading to most of mass in planets, small remainder in debris and no remaining interplanetary gas
- Q: how can small dust/ice particles interact? Q: how would the particles clump and grow?

Forces/Interactions in the Protosolar Nebula

 gravity → everything attracts everything else advantages: "reaches out" over space democratic: affects gas and solids but: at the beginning, disk smooth, circular most gravitational forces due to Sun no large objects yet to pull in neighboring material → gravity will be crucial, but need large objects first

 \rightarrow must cross minimize size ''threshold'' first

00

 collisional/sticking forces—atomic/solid state forces in solids solid particles collide, stick → make fewer, larger particles only effective in solids (dust/ice): not gas doesn't "reach out" –requires particles to touch initially dust/ice particles small—hard to "find" each other → slow acting: collisional effects set planet formation time

Protosolar Choreography

Phase I: Collisional solid particles (dust/ice) collide, stick → small solid bodies: "planetesimals" (like asteroids/comets)

gas as yet unaffected but acts as frictional drag on non-circular planetesimal motion

collisional processes continue until planetesimals massive enough \rightarrow gravity takes over

ဖ

Phase II: Gravitational

big planetesimals attract small → accumulate mass
 → even stronger gravitational sources
 "the rich get richer"
 → fewer & larger objects: "protoplanets"

collisions \rightarrow spin tilts, craters, the Moon!

Q: once planetesimals/protoplanets gravitate effectively, how does the affect the gas in the disk?

```
Outer Solar System (beyond snow line):
when core \sim 10M_{\rm Earth}
gravity attracts, holds H, He gas
mass grows even more rapidly
```

Inner Solar System (inside snow line) smaller cores (no ices), higher $T \rightarrow$ can't hold H, He masses remain small

leftover planetesimals:

- rocky: asteroid belt
 Jupiter's gravity prevents planet formation
- icy: Kuiper belt, some ejected to Oort cloud
- \ddagger as proto-Sun brightens: remaining interplanetary gas heats \rightarrow if not captured by giant planets, then driven out of SS

Theory of Solar System Origin: Executive Summary

stars born in cold gas & dust clumps: molecular clouds "gravitational collapse": runaway contraction

angular momentum: centrifugal barrier to collapse most matter \rightarrow proto-Sun high-angular momentum matter: protoplanetary disk around sun

gas ρ , matter state (presence of ices) change with R water/ice "snow" line at $R_{snow} \sim 3$ AU: Inner/Outer planet boundary!

Testing Solar System Origin

until recently, Solar Nebula theory had only one system to explain: us!

Now: Major new info on planet existence, birth around other stars

Q: what questions can only be answered by looking elsewhere?

Q: what questions can't be answered by looking elsewhere?

Q: what observable predictions does Solar Nebula theory make for young stars, mature planet-bearing stars?

Testing Solar Nebula Theory

Now seeing planets, planet formation around other stars Solar Nebula theory should work generally \rightarrow should apply to these systems too

...though some details might vary Q: why?

General Predictions of Solar Nebula Theory

In forming stars (protostars):

- 1. young protostars have gas disk
- 2. older protostars have planetesimal disk
- In fully-formed star and planet systems:
- 1. small planets near star
- 2. massive planets farther away
- 3. orbits nearly circular

14

Problem: solar nebula theory built to explain

one data point (SS)! \rightarrow is the model "fine-tuned"?