Astro 210 Lecture 25 March 18, 2011

Announcements

- HW7 due
- Good news: no homework due after break
- Bad news: Hour Exam 2 Friday April 2

www: info online

Last time: Protosolar Nebula theory for solar system origin

Theory of Solar System Origin: Executive Summary

stars born in cold gas & dust clumps: molecular clouds "gravitational collapse": runaway contraction

angular momentum: centrifugal barrier to collapse most matter \rightarrow proto-Sun high-angular momentum matter: protoplanetary disk around sun

gas ρ , matter state (presence of ices) change with R water/ice "snow" line at $R_{snow} \sim 3$ AU: Inner/Outer planet boundary!

Testing Solar Nebula Theory

Now seeing planets, planet formation around other stars Solar Nebula theory should work generally \rightarrow should apply to these systems too

...though some details might vary Q: why?

General Predictions of Solar Nebula Theory

In forming stars (protostars):

- 1. young protostars have gas disk
- 2. older protostars have planetesimal disk
- In fully-formed star and planet systems:
- 1. small planets near star
- 2. massive planets farther away
- 3. orbits nearly circular
- $_{\omega}$ Problem: solar nebula theory built to explain one data point (SS)! \rightarrow is the model "fine-tuned"?

iClicker Twofer: Bets on Planet Formation

Vote your conscience!

Which prediction seem most solid to you?

- young protostars have gas disk
- 3 older protostars have planetesimal disk
- C small planets near star
 - > massive planets farther away
- E planet orbits nearly circular

▶ In same list: which prediction seems least solid?

Test I: Young Stars

evidence from direct imaging: 50% – 90% of youngest stars surrounded by gas disk disks are common and perhaps unavoidable!

- www: Orion HST montage
- www: protoplanetary disks in Orion
- www: Orion disks set of 4
- www: Orion disks side view (really disks)

disks thick, blocks light

- \rightarrow enough material to make planets
- \rightarrow agrees with Solar Nebula theory!

СЛ

 \rightarrow good evidence for disk formation!

Debris Disks

Some older protostars and fully-formed have spectrum that has two peaks \rightarrow two temperatures

- optical emission from the hot surface of star, and
- infrared emission from dust in disk!

Recently (past decade): can image the disks in the infrared www: β Pic disk w/star

We see warm dust (but no gas)

- most emission from numerous small particles
- but probably much larger particles present some ambiguous evidence for this already
 ▷ lumpy, non-symmetric disks seen

 β Pic disk warped \rightarrow due to planet gravity

• recently: giant planet imaged around β Pic!

σ

Solar Nebula Scorecard: Midterm Grades

General Predictions of Solar Nebula Theory

In forming stars (protostars):

- 1. young protostars have gas disk? check!
- 2. older protostars and fully formed stars have particle-bearing disk? check!

Solar Nebula Theory status: **Woo hoo!** so far so good! theory works up through disk formation how about planets themselves?

recall Solar Nebula predictions:

- giant planets far from stars
- rocky planets close in

7

• orbits nearly circular

Test II: Exoplanets

Exoplanets = extra-solar planets = planets around other stars \star have been sought for centuries!

★ first positive, definitive detection: 1994 (around dead star)

★ first detection around normal star: 1995

What took so long? Exoplanet detection is a huge technical challenge Q: Why?

Q: possible workarounds?

Challenges for Planet Hunters

Can't "just look" – glare! feeble light from planet drowned out by star flux \rightarrow need a more clever workaround

Several detection techniques have been proposed three of these have already borne planetary fruit!

Successful strategies thus far involve:

- look for planet(s) effect on host star
- get lucky
- both of the above

Q

Planet Effects on Host Stars: Reflex Motion

recall Newton III: since star exerts gravity force on planet planet *must* exert *same* force on star!

- *both* must accelerate! the star moves ("reflex motion") ...but $a = F/m \rightarrow a_{\star} \ll a_{planet}$
- both stars and planet orbit fixed "center of mass"

thus:

- the star moves too!
- what remains fixed is the center of mass a point on the line connecting the star and planet

consider two objects of equal masses $m_1 = m_2$

∀ *Q*: where is center of mass?

Q: how do distances r_1, r_2 to COM compare?

Center of Mass Reminder

Newton II: $a \propto F/m$ + Newton III: $F_{p \, on \, \star} = -F_{\star \, on \, p}$ $\Rightarrow F$ magnitude same, heavier object accelerated less \Rightarrow star moves slower, nearer to COM

```
• distances to center of mass:

total star-planet distance: r_{\star} + r_{p} = a

and m_{\star}r_{\star} = m_{p}r_{p}

so: r_{\star}/r_{p} = m_{p}/m_{\star} \ll 1

\Rightarrow and so v_{\star} \ll v_{p} but \neq 0!
```

How to use this?

11

- in practice, can't track star orbit path too small on sky
- but can look for "wobble" in star speed 1995: detection!

Planet Detection by Good Luck: Transits

if very lucky, planet orbit plane seen edge-on
so planet sometimes passes in front of star
★ causes partial eclipse of host star!
★ star dimming small but observable

Strategy: monitor light from candidate stars look for brightness changes as planet crosses ("transits") star's disk

Q: What is expected "light curve" of flux F(t) vs time t?

- *Q*: How to verify signal was due to a planet?
- Q: How to use signal to learn about planet?

Extra-Solar Planets: Results to Date

as of today:

- 538 exoplanets, 449 planetary systems
 gg # in solar system!
- 493 planets found via reflex motion
- of these, 177 found via transits
 ...but Kepler is monitoring > 1200 transit candidates!
- 21 planets found by direct imaging

What have we learned?

Getting the most from observable reflex motion

- 1. measure star P = planet P
- $\stackrel{\iota}{\omega}$ Q: if I know the period, can I get more?

Exoplanet Properties: Decoding the Wobble

Exoplanet Observable: 1. Wobble Period *P* Kepler, Newton: $a^3 = k(m_* + m_p)P^2$ (HW: put in *k* and solve) \Rightarrow planet semi-major axis *a*! www: exoplanet census plot

note power of Kepler's laws: get distance without measuring directly, but just by studying wobble cycle

- 2. measure max wobble speed v_{\star}
- *Q*: what does this tell us?

Exoplanet Observable: 2. Wobble Amplitude v_{\star}

wobble speed $v_{\star} \rightarrow \text{planet mass}$ how? $v_{\star} = \text{speed of star w.r.t. COM}$ diagram: star, planet speeds $\vec{R}_{\text{CM}} = m_p/(m_p + m_{\star})\vec{r_p} + m_{\star}/(m_p + m_{\star})\vec{r_{\star}} = 0, r = r_p + r_{\star}$ $m_{\star}v_{\star} = m_pv_p$ mom. cons. COM formulae $\rightarrow m_p$

Note: planet orbit plane can be tilted w.r.t. sky Q: if so, how is observed v_* affected? Q: if so, is planet mass overestimated or underestimated?

www: exoplanet mass data
Q: what is typical mass found so far? is this a surprise?

 \overrightarrow{G} 3. measure wobble speed pattern versus time *Q: what does this tell us?* **Exoplanet Observable: 3. Wobble Change vs Time** $v_{\star}(t)$ orbit eccentricity from shape of v_{\star} vs tif circular \rightarrow perfect sinusoid if eccentric: not sinusoidal *Q: recall Keplerian speed behavior–what's* v(t) for high e?

www: 51 Peg Doppler curve, e=0.014 www: 16 Cyg Doppler curve, e=0.67 www: HD 860606, e=0.92! Found in 2001! at least $4M_J$, goes from ~ 0.9 AU to 0.04 AU! \rightarrow range from 0 to 0.935! not clear how to manage this!