Astro 210

Lecture 28
April 4, 2011

Announcements

- Good news: instructor away today
- Guest: Prof. Myers-real observer, better jokes, better accent
- HW 8 due Friday
erratum posted, sign error fixed: $\mu=-5+5 \log _{10} d$
- Solar Observing this week Mon-Thurs open 10:30am to 3:30 pm; allow about 30min info, report form online
. Before exam: began the Sun

What is the Sun's "Surface"?

the Sun made of gas
cannot have a sharp, hard surface, has no edge
but does not look hazy; instead, do see sharp boundary: Sun appears to have surface!
www: Sun in white light
so: what's going on?

The Solar Photosphere

observed surface \rightarrow visible light emitted from
thin region/layer: "photosphere"
but why does light only come from this surface?
what defines the location of this surface?

Key idea: photon scattering
in Sun, photons scatter off electrons, ions
each photon scattered many (\gg millions!) times
outward progress erratic: "random walk"
diagram: γ trajectories
less scattering as move outwards and gas ρ decreases
until finally γs escape \rightarrow we see them
ω
Q: so what sets photosphere location?
scattering frequency/probability increases with
higher gas $\rho \rightarrow$ more "targets" to hit
can define mean free path $\ell_{\text {mfp }}$: average γ pathlength ("stepsize") between scatterings

iClicker Poll: Mean Free Path and Density

Does photon mean free path $\ell_{\text {mfp }}$ depend on the density ρ of the medium?
Which of these is most physically reasonable?

A $\quad \ell_{\mathrm{mfp}} \propto \rho$

B $\quad \ell_{\mathrm{mfp}} \propto 1 / \rho$
-
C $\ell_{\text {mfp }}$ independent of ρ
turns out: $\ell_{\mathrm{mfp}} \propto 1 / \rho$
not crazy: if no medium at all, then no scattering:
so stepsize infinite $\ell_{\mathrm{mfp}} \rightarrow \infty$ and $\rho \rightarrow 0$ gives right answer
but if ultradense medium, many scatterers:
$\rho \rightarrow \infty$ means $\ell_{\mathrm{mfp}} \rightarrow 0$

Apply to photons in the Sun:

- at center: highest ρ, smallest $\ell_{\mathrm{mfp}} \sim 1 \mathrm{~cm}(!) \ll R_{\odot}$ guaranteed scattering before leaving
- but as move outwards, $\rho \downarrow$ and so $\ell \uparrow$
- until ρ so low that $\ell_{\text {mfp }}>R_{\odot}$
\rightarrow scattering finally "turns off"
v Fun fact: the sunlight we see from the photosphere took millions of years to come from the Sun's core!

So: photons from Sun come from "last scattering" surface this is the photosphere: region where $\ell_{\mathrm{mfp}} \rightarrow \infty$

- $\delta r_{\text {photosphere }} \sim f e w 100$'s of km thick
- $T_{\text {photosphere }} \sim 6400 \mathrm{~K}$ at base, $\sim 4200 \mathrm{~K}$ at "top"
\Rightarrow we see T "mixture" - not perfect single- T blackbody
can see deeper at center than at edge ("limb"): photons at edge come from higher, cooler region "limb darkening"

Sun's surface shows activity!
in photosphere, gas motion:
hot rises, cool sinks: convection
Demo: lighter, show on screen
granulation

Sunspots

dark regions on photosphere
www: today's sun in white light
www: sunspot seething
spots transient, last ~ 2 weeks
\#, location of sunspots varies
periodic: 11-year "sunspot cycle"
www: sunspot counts - we're on the upswing to a maximum
sunspots move: reveal solar spin
www: real time Sun movie
sunspots created by magnetism
strong mag. field "locks" plasma in place
keeps hot gas from rising
cooler gas \rightarrow dark spot

The Sun as a Star?

You've heard the Sun is a star
that is, the Sun is like other stars

But how do we know?

Q: How can we go about comparing the Sun to the stars?

Q: What will be easy to compare? what will be challenging?

STARS

iClicker Poll: Naked-Eye Stars

Vote your conscience!

On a clear night, outside of a city, about how many stars can you see with the naked eye?

A More than the number of people in a packed movie theater

B More than the number of people at a UI football game

C More than the population of Illinios

Stars: Brightness

to naked eye, in clear sky:
about 6000 (!) stars visible over celesital sphere
\Rightarrow about 3000 at any one night
...but this is just the "tip of the iceberg"
directly measure flux
Q: for old time's sake, remind me-what is flux?
ex: Sun: $F_{\odot}=1370 \mathrm{Wm}^{-2}$
Sirius ("dog star")

$$
\frac{F_{\text {Sirius }}}{F_{\odot}}=7.6 \times 10^{-11}
$$

II
tiny, but had to be-we know stars are much dimmer than Sun

iClicker Poll: Getting Sirius

flux comparison: Sirius vs the Sun
$F_{\text {Sirius }} / F_{\odot}=7.6 \times 10^{-11}$

Does this mean that Sirius is less luminous than the Sun?

A yes

B no

C can't tell from this information alone

Luminosity

recall: apparent brightness \neq luminosity!

- luminosity $=$ power emitted from star: "wattage" units: energy/time, e.g., Watts
- flux $=$ power per unit area (at some observer location) units: power/area, e.g., Watts/m²

Apprent brightness and luminosity related by

$$
\begin{equation*}
\text { observer-dependent } F=\frac{L}{4 \pi r^{2}} \frac{\text { observer-independent }}{\text { observer-dependent }} \tag{1}
\end{equation*}
$$

inverse square law!
farther \leftrightarrow dimmer
hence brightness is "apparent" - depends on observer
but L is intrinsic fundamental property of a star
Q : how measure star L ?

To find \star luminosities

1. Measure F
2. Measure d
3. solve: $L=4 \pi d^{2} F$
ergo: to compare wattage of stars, need distances!

Distances to Stars

a difficult, longstanding (ongoing!) problem today many techniques exist but technology good enough in last 2 centuries

Parallax - the "gold standard" of stellar distances Demo: thumb's up-arm's length, halfway
as Earth orbits, our viewpoint shifts (slightly!)
\rightarrow nearby \star s appear to move w.r.t. background $\star s$
measure: angular shift p

Q: diagram is top view-what is sky view over 1 year?
Q : how are $1 A U, d$, and angle p related?

Distances: Geometry and Units

trig technology: $d \tan p=1 \mathrm{AU}$
\Rightarrow distance $d=1 \mathrm{AU} / \tan p$
but p tiny! (≤ 1 arc sec $\left.\sim 10^{-5} \mathrm{rad} \ll 1\right)$
$\rightarrow \tan p_{\text {rad }} \approx p_{\text {rad }}$, so
$d=1 \mathrm{AU} / p_{\mathrm{rad}}$, or

$$
\begin{equation*}
d=\frac{1 \mathrm{pc}}{p_{\text {arcsec }}} \tag{2}
\end{equation*}
$$

where $p_{\text {arcsec }}$ is p in arc sec
and $1 \mathrm{pc}=1 \mathrm{parsec}=1 \mathrm{AU} /(1 \mathrm{arcsec})_{\mathrm{rad}}=3.086 \times 10^{16} \mathrm{~m}$
\rightarrow distance to a star with $p=1$ arcsec
occasionally use light year $=$ distance light travels in 1 yr
Һ $\mathrm{lyr}=c \times 1 \mathrm{yr}=9.5 \times 10^{15} \mathrm{~m}$
note: $1 \mathrm{pc}=3.26 \mathrm{lyr}$

Distances: Observations

typical parallactic shift is tiny (if observable at all!)
all less than 1 arcsec $=\frac{1}{3600}$ deg $=5 \times 10^{-6}$ radian!!
Sirius: $p=0.366$ arcsec
$d=\frac{1}{0.366} \mathrm{pc}=2.65 \mathrm{pc} \simeq 5 \times 10^{5} \mathrm{AU}$
nearest star: α Centauri
at $1.3 \mathrm{pc}=4 \mathrm{lyr}$
note: even from nearest star, light takes 4 years to get here!
Lessons:

- 1 pc \sim typical distance between neighboring stars in our Galaxy (and others) www: 100 nearest stars
- parallax p tiny at best
\rightarrow measureable only for nearest stars
Q : what to do for more distant objects?

