Astro 210 Lecture 29 April 6, 2011

Announcements

- Good news: instructor still out of town!
- Guest: Prof. Myers-real observer, better jokes, better accent
- HW 8 due next time erratum posted, sign error fixed: $\mu = -5 + 5 \log_{10} d$
- Solar Observing today and tomorrow open 10:30am to 3:30 pm; allow about 30min info, report form online

Last time: Stars

• parallax Q: what's that? what's it good for? limitations?

н

Star Brightness: Magnitudes

```
star brightness measured in magnitude scale magnitude = "rank" : smaller m \rightarrow brighter Sorry.
```

Magnitudes use a logarithmic scale:

difference of 5 mag is factor of 100 in flux:

 $m_2 - m_1 = -2.5 \log_{10} F_2 / F_1$ (definition of mag scale!)

 mag units: dimensionless! (but usually say "mag") because mags are *logs* of *ratio* o f two dimensionful fluxes with physical units like W/m²

What is mag difference $m_2 - m_1$:

Q: *if* $F_2 = F_1$?

N

- *Q*: what is sign of difference if $F_2 > F_1$?
- Q: for equidistant light bulbs, $L_1 = 100$ Watt, $L_2 = 50$ Watt?

Apparent Magnitude

a measure of star flux = (apparent) brightness

- no distance needed
- arbitrary mag zero point set for convenience: historically: use bright star Vega: $m(Vega) \equiv 0$ then all other mags fixed by ratio to Vega flux
- ex: Sun has apparent magnitude $m_{\odot} = -26.74$ i.e., $-2.5 \log_{10}(F_{\odot}/F_{Vega}) = -26.74$ so $F_{Vega} = 10^{-26.74/2.5}F_{\odot} = 2 \times 10^{-11}F_{\odot}$
- ex: Sirius has $m_{Sirius} = -1.45 \rightarrow \text{brighter than Vega}$ so: $F_{Sirius} = 3.8F_{Vega} = 8 \times 10^{-11}F_{\odot}$
- ex: $m_{\text{Polaris}} = 2.02 \ Q$: rank Polaris, Sirius, Vega?

* if *distance* to a star is known
 can also compute Absolute Magnitude

abs mag $M \equiv$ apparent mag if star placed at $d_0 = 10 \text{ pc}$

Q: what does this measure, effectively?

Absolute Magnitude

absolute magnitude M = apparent mag at $d_0 = 10 \text{ pc}$

places all stars at constant fixed distance

- \rightarrow a stellar "police lineup"
- \rightarrow then differences in F only due to diff in ${\it L}$
- \rightarrow absolute mag effectively measure luminosity

```
Sun: abs mag M_{\odot} = 4.76 mag
Sirius: M_{\text{Sirius}} = +1.43 mag
Vega: M_{\text{Vega}} = +0.58 mag
Polaris: M_{\text{Polaris}} = -3.58 mag
\epsilon Eridani: M_{\epsilon \text{Eri}} = +6.19 mag (nearest exoplanet host; d = 3.2 pc)
Q: rank them in order of descending L?
```

С

Immediately see that Sun neither most nor least luminous star around

Distance Modulus

take ratio of actual star flux vs "lineup" flux at abs mag distance $d_0 = 10$ pc:

$$\frac{F}{F_0} = \frac{L/4\pi d^2}{L/4\pi d_0^2} = \frac{d_0^2}{d^2} \tag{1}$$

so we have

$$m - M = -2.5 \log\left(\frac{F}{F_0}\right) = -2.5 \log\left(\frac{d_0}{d}\right)^2 = 5 \log\left(\frac{d}{10 \text{ pc}}\right) \quad (2)$$

- depends only on distance *d*, not on luminosity! can use as measure of distance
- define $\mu \equiv m M$: "distance modulus"

σ

Star Color

Recall: color related to Temperature colder: redder; hotter: bluer www: objective prism spectra

very useful to *quantify* color!

 could try spectrum peak λ_{max} – but often, absorption lines → non-blackbody spectrum also: full spectrum from spectrometer "expensive" → have to collect more light since spread out

Q: what's a cheaper way to get color information from an image? Note: imaging detectors are CCDs

 $^{\sim} \rightarrow`$ democratically'' count all photons they see equally regardless of wavelength

To get color information without a spectrometer:
⇒ use filter which accepts light
only in a range of wavelengths: "passband"

www: filter wheel

 $F_B \rightarrow m_B = B$: blue band, centered around $\lambda \approx 440$ nm $F_V \rightarrow m_V = V$: "visual", yellowish, $\lambda \approx 550$ nm ...and many others www: filter λ ranges

images in multiple filters \leftrightarrow crude spectrum

 $_{\infty}$ Q: how to quantify color based on filter data?

Color Index

measure color by comparing flux at different λ bands

"color index" $B-V = 2.5 \log F_V/F_B + const \rightarrow ratio of fluxes$ Fix const: B-V = 0 for star with T = 10,000 K (e.g., Vega) index measures T!www: color and spectra

ex: www: Orion Betelgeuse reddish, B-V = 1.5; $T \sim 3300$ K Rigel bluish, B-V = -0.1; $T \sim 12,000$ K

ဖ

Stars: Temperatures and Spectral Types

Note: color index is useful but crude measure of star T

in today's Director's Cut Extras:

how to use full spectrum of star to get accurate temperatures

this procedure classifies star "spectral types" which correspond to different temperatures hotter \rightarrow cooler: **OBAFGKMLT**

10

how to remember? classic mnemonic: "Oh be a find girl/guy kiss me" HW9: make your own mnemonic for bonus points and prizes!

Star Luminosity

color and/or Spectral type \rightarrow temperature T

stellar luminosity depends on T but also on radius R: since surface flux F = L/area = σT^4

$$L = 4\pi R^2 \sigma T^4 \tag{3}$$

so for fixed T (same spectral type), $L \propto R^2$ \rightarrow bigger stars \rightarrow bigger emitting surface \rightarrow higher L

iClicker Poll: Star Temperature and Luminosity

Vote your conscience!

For large sample of stars, measure L and T for each plot points on diagram of L vs TWhat will the data show?

- A random scatter: stars have large range of L, and of T, and in any combination
- B tight clump of points: stars are nearly identical, all with very similar L and T
- C a clear trend: stars have large range of L and of T but the two vary together (correlated)
- 12

none of the above

A Stellar Census: Hertzsprung-Russel Diagram

Hertzsprung-Russell: plot L vsT for lotsa stars really, abs mag M_V vs spectra type but these are equivalent to L and T

www: H-R diagram

Q: what patterns do you notice?

Q: where are most stars?

Q: where is the Sun?

Hertzsprung-Russel Diagram

```
for a "fair sample" of stars
(i.e., not a specially picked cluster)
trends emerge
```

most stars (~ 90%) fall on curve: "main sequence"
 (including the Sun!); "dwarfs"
most of the rest: cooler but more luminous: "giants"
a rare few: hot but luminous: "supergiants"
not rare but dim and hard to find:

very hot but very low-L objects: "white dwarfs"

 $_{\mathbb{R}}$ Q: what does the HR diagram tell us about the Sun?

H-R and the Sun

The Sun on H-R diagram:

- on the main sequence
- position is in the middle of the curve

but the main sequence is where most stars are found!

thus: the Sun is a typical star!

- lies in heart of main sequence L vs T trend
- neither most nor least luminous, not hottest or coolest

Other questions arise:

- *why* do stars lie on the main sequence?
- what controls their position on the diagram?
- what's up with the giants, supergiants, and white dwarfs? ...stay tuned

15

Stellar Temperatures

instead of broadband colors, take full stellar spectrum \rightarrow contains much more information

roughly ("zeroth approximation"): stars are blackbody emitters > spectrum roughly Planckian, $\lambda_{max} \rightarrow T$ (Wien's law)

more realistically: stars are not perfect blackbodiesQ: why? hint-what does the Sun's spectrum look like?Q: how can we make use of the non-blackbody aspects?

Stars: Spectral Types

solar & stellar photospheres cooler than underlying material

- \rightarrow observed spectrum shows absorption lines
- "barcode" of elements in star, but also
- distorts spectrum from blackbody

Annie Jump Cannon, Harvard \sim 1900:

studied many stellar spectra, and found patterns:

- different atomic lines show different *relative* strength in different stars *Q*: *meaning*?
- linestength variations not random: follow pattern
- \star can *classify* stars accoring to spectrum
 - \rightarrow spectral types: originally named ABC...

18

Physical Origin: What Spectal Types Mean

first consider one atom's lines:

Balmer series in hydrogen: $n = 2 \rightarrow n \ge 3$

diagram: Balmer line strength vs \star atmosphere temperature T

as T increases, strength increases \rightarrow max \rightarrow decreases

Q: why this pattern?

```
What's going on?
Balmer needs n = 2 H atoms:
\rightarrow need neutral atoms, but in 1st excited state
temperature "fine tuning" required
too cold: most in ground state n = 1
hot: most ionized (n = \infty)
Balmer \rightarrow intermediate T!
```

similar issues with other lines

 \rightarrow each has ''favorite'' temperature where strongest

Q: so what sets spectral types?

Q: M, L, T types include molecular lines–what does this mean?

Q: O stars have singly ionized He, doubly ionized carbon

what does this mean?

20

Key point:

spectral type $\Leftrightarrow T$

- a better, finer scale than color index
- gold standard for temperature
- when sorted by temperature, spectral types un-alphabetical hotter → cooler: OBAFGKMLT

how to remember?

classic mnemonic: "Oh be a find girl/guy kiss me" HW9: make your own mnemonic for bonus points and prizes!

OBAFGKMLT

Spectra types \rightarrow spectral features \rightarrow temperature

e.g., Sun is G-type star:

most elements neutral, some heavier elements singly ionized

 \rightarrow intermediate temperature: 4900-5700 K

compare: O stars have high ionization states \rightarrow very high T > 30,000 K! MLT stars not only neutral atoms, but even molecules \rightarrow molecule survival \rightarrow very low T < 3800 K

22