Astro 210
Lecture 29
April 6, 2011

Announcements

- Good news: instructor still out of town!
- Guest: Prof. Myers-real observer, better jokes, better accent
- HW 8 due next time erratum posted, sign error fixed: $\mu=-5+5 \log _{10} d$
- Solar Observing today and tomorrow open 10:30am to 3:30 pm; allow about 30min info, report form online

Last time: Stars

- parallax Q : what's that? what's it good for? limitations?

Star Brightness: Magnitudes

star brightness measured in magnitude scale magnitude $=$ "rank" : smaller $m \rightarrow$ brighter Sorry.

Magnitudes use a logarithmic scale:

- difference of 5 mag is factor of 100 in flux:
$m_{2}-m_{1}=-2.5 \log _{10} F_{2} / F_{1} \quad$ (definition of mag scale!)
- mag units: dimensionless! (but usually say "mag") because mags are logs of ratio o f two dimensionful fluxes with physical units like W / m^{2}

What is mag difference $m_{2}-m_{1}$:
Q: if $F_{2}=F_{1}$?
Q: what is sign of difference if $F_{2}>F_{1}$?
Q: for equidistant light bulbs, $L_{1}=100 \mathrm{Watt}, L_{2}=50 \mathrm{Watt} ?$

Apparent Magnitude

a measure of star flux $=$ (apparent) brightness

- no distance needed
- arbitrary mag zero point set for convenience: historically: use bright star Vega: m (Vega) $\equiv 0$ then all other mags fixed by ratio to Vega flux
- ex: Sun has apparent magnitude $m_{\odot}=-26.74$
i.e., $-2.5 \log _{10}\left(F_{\odot} / F_{\text {Vega }}\right)=-26.74$
so $F_{\text {Vega }}=10^{-26.74 / 2.5} F_{\odot}=2 \times 10^{-11} F_{\odot}$
- ex: Sirius has $m_{\text {Sirius }}=-1.45 \rightarrow$ brighter than Vega so: $F_{\text {Sirius }}=3.8 F_{\text {Vega }}=8 \times 10^{-11} F_{\odot}$
\bullet ex: $m_{\text {Polaris }}=2.02$ Q: rank Polaris, Sirius, Vega?
* if distance to a star is known can also compute Absolute Magnitude
abs mag $M \equiv$ apparent mag if star placed at $d_{0}=10 \mathrm{pc}$

Q: what does this measure, effectively?

Absolute Magnitude

absolute magnitude $M=$ apparent mag at $d_{0}=10$ pc
places all stars at constant fixed distance
\rightarrow a stellar "police lineup"
\rightarrow then differences in F only due to diff in L
\rightarrow absolute mag effectively measure luminosity

Sun: abs mag $M_{\odot}=4.76 \mathrm{mag}$
Sirius: $M_{\text {Sirius }}=+1.43 \mathrm{mag}$
Vega: $M_{\text {Vega }}=+0.58 \mathrm{mag}$
Polaris: $M_{\text {Polaris }}=-3.58 \mathrm{mag}$
ϵ Eridani: $M_{\epsilon \text { Eri }}=+6.19 \mathrm{mag}$ (nearest exoplanet host; $d=3.2 \mathrm{pc}$)
Q : rank them in order of descending L ?
G
Immediately see that Sun neither most nor least
luminous star around

Distance Modulus

take ratio of actual star flux vs "lineup" flux at abs mag distance $d_{0}=10 \mathrm{pc}$:

$$
\begin{equation*}
\frac{F}{F_{0}}=\frac{L / 4 \pi d^{2}}{L / 4 \pi d_{0}^{2}}=\frac{d_{0}^{2}}{d^{2}} \tag{1}
\end{equation*}
$$

so we have

$$
\begin{equation*}
m-M=-2.5 \log \left(\frac{F}{F_{0}}\right)=-2.5 \log \left(\frac{d_{0}}{d}\right)^{2}=5 \log \left(\frac{d}{10 \mathrm{pc}}\right) \tag{2}
\end{equation*}
$$

- depends only on distance d, not on luminosity! can use as measure of distance
- define $\mu \equiv m-M$: "distance modulus"

Star Color

Recall: color related to Temperature
colder: redder; hotter: bluer
www: objective prism spectra
very useful to quantify color!

- could try spectrum peak $\lambda_{\max }$ - but often, absorption lines \rightarrow non-blackbody spectrum also: full spectrum from spectrometer "expensive" \rightarrow have to collect more light since spread out

Q: what's a cheaper way to get color information from an image?
Note: imaging detectors are CCDs
$\nu \rightarrow$ 'democratically" count all photons they see equally regardless of wavelength

To get color information without a spectrometer:
\Rightarrow use filter which accepts light only in a range of wavelengths: "passband"
www: filter wheel
$F_{B} \rightarrow m_{B}=B$: blue band, centered around $\lambda \approx 440 \mathrm{~nm}$
$F_{V} \rightarrow m_{V}=V$: "visual", yellowish, $\lambda \approx 550 \mathrm{~nm}$
...and many others
www: filter λ ranges
images in multiple filters \leftrightarrow crude spectrum
∞ Q: how to quantify color based on filter data?

Color Index

measure color by comparing flux at different λ bands
"color index"
$B-V=2.5 \log F_{V} / F_{B}+$ const \rightarrow ratio of fluxes
Fix const: $B-V=0$ for star with $T=10,000$ K (e.g., Vega)
index measures T !
www: color and spectra
ex: www: Orion
Betelgeuse reddish, $B-V=1.5 ; T \sim 3300 \mathrm{~K}$
Rigel bluish, $B-V=-0.1 ; T \sim 12,000 \mathrm{~K}$

Stars: Temperatures and Spectral Types

Note: color index is useful but crude measure of star T
in today's Director's Cut Extras:
how to use full spectrum of star to get accurate temperatures
this procedure classifies star "spectral types"
which correspond to different temperatures
hotter \rightarrow cooler: OBAFGKMLT
how to remember?
classic mnemonic: "Oh be a find girl/guy kiss me"
¿ HW9: make your own mnemonic for bonus points and prizes!

Star Luminosity

color and/or Spectral type \rightarrow temperature T
stellar luminosity depends on T
but also on radius R :
since surface flux $F=L /$ area $=\sigma T^{4}$

$$
\begin{equation*}
L=4 \pi R^{2} \sigma T^{4} \tag{3}
\end{equation*}
$$

so for fixed T (same spectral type), $L \propto R^{2}$
\rightarrow bigger stars \rightarrow bigger emitting surface \rightarrow higher L

iClicker Poll: Star Temperature and Luminosity

Vote your conscience!

For large sample of stars, measure L and T for each
plot points on diagram of L vs T
What will the data show?

A random scatter: stars have large range of L, and of T, and in any combination

B tight clump of points: stars are nearly identical, all with very similar L and T

C a clear trend: stars have large range of L and of T but the two vary together (correlated)

D none of the above

A Stellar Census: Hertzsprung-Russel Diagram

Hertzsprung-Russell: plot L vsT for lotsa stars
really, abs mag M_{V} vs spectra type
but these are equivalent to L and T
www: H-R diagram

Q: what patterns do you notice?
Q: where are most stars?
Q: where is the Sun?

Hertzsprung-Russel Diagram

for a "fair sample" of stars
(i.e., not a specially picked cluster)
trends emerge
most stars ($\sim 90 \%$) fall on curve: "main sequence"
(including the Sun!); "dwarfs"
most of the rest: cooler but more luminous: "giants"
a rare few: hot but luminous: "supergiants"
not rare but dim and hard to find: very hot but very low- L objects: "white dwarfs"
$\stackrel{\rightharpoonup}{\perp}$: what does the HR diagram tell us about the Sun?

H-R and the Sun

The Sun on $\mathrm{H}-\mathrm{R}$ diagram:

- on the main sequence
- position is in the middle of the curve
but the main sequence is where most stars are found!
thus: the Sun is a typical star!
- lies in heart of main sequence L vs T trend
- neither most nor least luminous, not hottest or coolest

Other questions arise:

- why do stars lie on the main sequence?
- what controls their position on the diagram?
$\stackrel{\leftrightarrow}{\sigma}$
- what's up with the giants, supergiants, and white dwarfs?
...stay tuned

Director's Cut Extras

Stellar Temperatures

instead of broadband colors, take full stellar spectrum
\rightarrow contains much more information
roughly ("zeroth approximation"): stars are blackbody emitters
\triangleright spectrum roughly Planckian, $\lambda_{\max } \rightarrow T$ (Wien's law)
more realistically: stars are not perfect blackbodies
Q: why? hint-what does the Sun's spectrum look like?
Q: how can we make use of the non-blackbody aspects?

Stars: Spectral Types

solar \& stellar photospheres cooler than underlying material
\rightarrow observed spectrum shows absorption lines

- "barcode" of elements in star, but also
- distorts spectrum from blackbody

Annie Jump Cannon, Harvard ~1900:
studied many stellar spectra, and found patterns:

- different atomic lines show different relative strength in different stars Q : meaning?
- linestength variations not random: follow pattern
* can classify stars accoring to spectrum
\rightarrow spectral types: originally named ABC...

Physical Origin: What Spectal Types Mean

first consider one atom's lines:
Balmer series in hydrogen: $n=2 \rightarrow n \geq 3$
diagram: Balmer line strength vs \star atmosphere temperature T
as T increases, strength increases \rightarrow max \rightarrow decreases
Q: why this pattern?

What's going on?
Balmer needs $n=2 \mathrm{H}$ atoms:
\rightarrow need neutral atoms, but in 1st excited state
temperature "fine tuning" required
too cold: most in ground state $n=1$
hot: most ionized ($n=\infty$)
Balmer \rightarrow intermediate T !
similar issues with other lines
\rightarrow each has "favorite" temperature where strongest

Q: so what sets spectral types?
Q: M, L, T types include molecular lines-what does this mean?
Q: O stars have singly ionized He, doubly ionized carbon

Key point:

spectral type $\Leftrightarrow T$

- a better, finer scale than color index
- gold standard for temperature
- when sorted by temperature, spectral types un-alphabetical hotter \rightarrow cooler: OBAFGKMLT
how to remember?
classic mnemonic: "Oh be a find girl/guy kiss me"
HW9: make your own mnemonic for bonus points and prizes!

OBAFGKMLT

Spectra types \rightarrow spectral features \rightarrow temperature
e.g., Sun is G-type star:
most elements neutral, some heavier elements singly ionized \rightarrow intermediate temperature: 4900-5700 K
compare: O stars have high ionization states
\rightarrow very high $T>30,000 \mathrm{~K}$!
MLT stars not only neutral atoms, but even molecules
\rightarrow molecule survival \rightarrow very low $T<3800 \mathrm{~K}$

