Astro 210 Lecture 31 April 11, 2011

Announcements

- HW 9 available, due at start of class Friday
- Solar Observing: this week today(?!) and tomorrow 10:30am to 3:30 pm allow about 30min info, report form online

Last time: energy generation in the Sun and stars

- the Sun is not a cup of coffee Q: how so? what does this teach us?
- Choosing among possible solar energy sources
 - Q: how to do this without looking inside the Sun?

Last time: to maintain huge solar luminosity L_{\odot} over long solar lifetime $\tau_{\odot} > 5$ billion years requires an *enormous* energy source

The **only** viable candidate: Nuclear Energy

The Sun is a vast nuclear reactor in hot core, hydrogen converted to helium by nuclear reactions

Note: needed *quantitative* estimates of burn times
 to answer *qualitative* question "What powers the Sun?"
 N → the power of (and necessity of) number crunching!

Nuclear Fusion in the Sun

The Sun is a nuclear reactor i.e., nuclear reactions occur inside the Sun change reactant nuclei into different product nuclei \rightarrow elements transformed into other elements \rightarrow cosmic alchemy!

Mechanism: high-energy/high-speed collisions between nuclei

 $nucleus_1 + nucleus_2 \rightarrow nucleus_3 + energy$ (1)

- nuke energy release \rightarrow stellar power source
- lighter nuclei combine \rightarrow heavier: fusion
- Q: why are high energies, speeds needed?
- Q: how do the nuclei get these energies & speeds?

ω

In fact: many reactions can and do occur but a small handful are the most important

Key reactions occur in "chains"

- first step involves pre-existing solar ingredients (*Q: namely?*)
- input for each new step is output from previous step

Dominant reactions: ["pp" Chain] $p + p \rightarrow {}^{2}H + e^{+} + \nu$ $e^{-} + e^{+} \rightarrow \gamma + \gamma$ ${}^{2}H + p \rightarrow {}^{3}He + \gamma$ ${}^{3}He + {}^{3}He \rightarrow {}^{4}He + 2p$

Net effect: $4p + 2e^{-} \rightarrow \boxed{2n2p} = {}^{4}\text{He} + \text{energy} + \dots$ each "p-p reaction" creates:

```
• <sup>2</sup>H=<u>np</u> "deuterium"
"heavy hydrogen"
```

• *e*⁺ "positron"

antimatter: anti-electron! then $e^- + e^+ \rightarrow \gamma + \gamma$ energy! annihilation

• *ν* "neutrino"

СЛ

very low-mass $(m_{\nu} \ll m_e)$ particle only created in nuclear reactions ("weak" decays) very weakly interacting particle once born, go thru Sun, Earth, your body but almost never interact ν escape diagram

Fusion Energy

Where does the energy come from? mass!

www: Big Al www: scale cartoon Einstein: $\varepsilon = mc^2$

Observed fact: $m({}^{4}\text{He}_{atom}) < m(4p + 2e)!$ whole < parts! Do the math:

$$m(4p + 2e) = 6.694 \times 10^{-27} \text{ kg}$$

- $m(^{4}\text{He}) = 6.644 \times 10^{-27} \text{ kg}$
= $\Delta m = 5 \times 10^{-29} \text{ kg}$

fusion \rightarrow mass reduction!

σ

 \rightarrow rest mass decrease \rightarrow energy release!

in each reaction mass \rightarrow energy (kinetic, photons) $Q = \Delta \varepsilon = \Delta mc^2 = 4.5 \times 10^{-12}$ Joules for each $4p \rightarrow {}^{4}He$ fusion

Estimate fusion energy supply:

$$E_{\rm fuse} = \frac{\# \text{ nuclei in Sun}}{4 \text{ nuclei/fusion}} \times Q \sim 1.3 \times 10^{45} \text{ Joules}$$
(2)
if all Sun's hydrogen is fuel, can burn for
$$\tau_{\rm fuse} = E_{\rm fuse}/L = 3 \times 10^{18} \text{ sec} = 100 \text{ billion years!}$$

Vote your conscience!

This is a crude estimate of the solar fusion lifespan-but how?

if

this is an overestimate of the lifespan

this is an *under*estimate of the lifespan

Solar Life Expectancy

Overestimated fuel available for fusion:

```
\rightarrow only fuse at high T, \rho
\rightarrow core of Sun
```

00

```
true lifetime: \tau \sim 1 \times 10^{10} yr = 10 billion yrs

\rightarrow Sun is middle aged

will last another \sim 5 billion yrs
```

Q: how test that sun is nuke powered?

How Do We Know?

By the 1930's we knew that the Sun is nuclear powered www: Nobel Prize: Hans Bethe

The Sun is a mass of incandescent gas a gigantic nuclear furnace Where hydrogen is burned into helium, at temperatures of millions of degrees – Lou Singer and Hy Zaret, 1959; cover: They Might Be Giants 1993

Q: how could we be so sure?

Can we get even more direct confirmation? *Q: is another way to confirms the Sun is a nuclear reactor?* A *"smoking gun" signature?*

9

The Evidence: Solar Neutrinos

If the Sun takes $4p \rightarrow {}^{4}\text{He} = 2p2n$ then it *must* convert $2p \rightarrow 2n$ \rightarrow *must* produce neutrinos! in fact: most made via $pp \rightarrow de^{+}\nu$

The Sun radiates neutrinos as well as photons! we are bathed in solar "neutrinoshine"

Moreover:

10

- since ν are weakly interacting they come directly from the solar core
 → messengers from the center of the Sun!
- but luckily, weakly interacting \neq non-interacting \Rightarrow solar neutrinos are potentially observable!
- clever experiments can try to "catch" them

In Search of Solar Neutrinos

experiments have been built to "see" solar neutrinos by observing rare cases of ν interactions with atoms all use huge underground detectors *Q*: why huge? why underground?

Two types:

11

1. "radiochemical" – vats of fluid see element change due to ν ex: chlorine fluid $\nu + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^$ collect Ar atoms (radioactive!) www: Davis chlorine experiment

2. "scattering" - vats of ultrapure water see light pulses from high-energy e^- scattered by ν s www: SNO ball www: Super-K Sun image Upshot:

- **\star** All experiments detect solar ν s!
- \star Amount (flux) is just as predicted
- *Q*: what fundamental fact(s) is/are confirmed?

Solar Neutrino Results

I. proof that Sun powered by nuke fusion II. ν s give view into solar core III. these are ν telescopes!

A new window on the Universe: **Nobel Prize 2002!**

Poetry reading: John Updike, "Cosmic Gall"

The Stars as Suns

We've proved that that Sun is nuclear reactor but (we'll see that) the Sun is a typical star \Rightarrow all stars run by thermonuclear fusion

The Night sky, the Universe lit up ultimately by nuclear power