Astro 210 Lecture 32 April 13, 2011

Announcements

- HW 9 due at start of class next time instructor office hours: today after class TA office hours: tomorrow 10:30-11:30am
- Solar Observing: *last day is today!* runs until 3:30 info, report form online

Last time: nuclear fusion in the Sun hydrogen "burning": $4p \rightarrow {}^{4}\text{He} + 2\nu + \text{energy}$ confirmed: neutrinos observed implications:

Ц

- \bullet Sun a typical star \rightarrow all stars nuclear powered
- a star's nuclear "fuel supply" is hydrogen mass

Mass

Most important parameter of a star!

Q: why is stellar mass hard to determine?

Q: when/how can mass be measured?

For single stars: mass determination difficult, very indirect

But can find masses for **binary** systems: two stars orbiting common center of mass *diagram: orbits*

measure P, r_1 , r_2 get m_1 , m_2 from Newton's version of Kepler's 3rd law

$$m_1 + m_2 = \frac{4\pi^2}{G} \frac{r^3}{P^2} \tag{1}$$

and $m_1/m_2 = r_1/r_2$

 $^{\omega}$ problem: must measure r's Q: how?

Types of Binary Stars

visual binary

can see both stars!
www: visual binary orbit

eclipsing binary

4

stars pass in front of each other can see in light curve: diagram: light curve \rightarrow get rs from timing of eclipses

spectroscopic binary

periodic Doppler shifts in spectrum see $\Delta \lambda_1$, $\Delta \lambda_2$ \rightarrow radial velocity $v_r/c = \Delta \lambda/\lambda_0$ then $v_1 = r_1 \omega = 2\pi r_1/P$ can solve for r!

iClicker Poll: Stellar Luminosity and Mass

Vote your conscience!

How are a star's luminosity and mass related?

A directly: larger $M \rightarrow$ larger L

B inversely: larger $M \rightarrow$ smaller L

no strong dependence: ${\cal L}$ nearly constant for all ${\cal M}$

for many stars find $M, L \rightarrow \text{plot!}$ www: M vs L -- beware! logarithmic axes

for *main sequence* stars ("normal" stars) there is a simple, clear correlation

mass-luminosity relation (main sequence):

$$L \propto M^4$$

where M is now mass, not magnitude! Note: this is a rough approximation, not accurate for $M \gtrsim 4M_{\odot}$

Q: what is *L* of $0.5M_{\odot}$ star?

0

Q: what does this mean for main sequence on HR diagram?

(2)

iClicker Poll: Stellar Lifetime

Stars of which mass live longer $-1M_{\odot}$ or $0.5M_{\odot}$?

- A $1M_{\odot}$: higher $M \rightarrow$ more fuel
- **B** 0.5 M_{\odot} : lower $L \rightarrow$ longer to "burn out"
- C effects cancel: lifetimes roughly equal

Stellar Lifespans

From M and L get *lifespan* τ since energy conservation gives

 $E = L \times \tau$ energy supply (fuel) = burn rate × lifespan (3) thus: $\tau = E/L$

but $E \propto M$: hydrogen mass is thermonuclear fuel

- $\tau = E/L \propto M/M^4 = M^{-3}$
- using solar values $\tau_{\odot} = \tau(M_{\odot}) = 10^{10}$ yr, get

$$\tau = 10^{10} \operatorname{yr}\left(\frac{1M_{\odot}}{M}\right)^3 \tag{4}$$

- ∞ high mass \leftrightarrow high luminosity \leftrightarrow short life
 - low mass ↔ low luminosity ↔ long life

Stellar Lifetimes: Implications

Some Facts:

Q

• main sequence mass-lifetime relation:

$$\tau = 10$$
 billion yr $\left(\frac{1M_{\odot}}{M}\right)^3$

(5)

• age of Sun and solar system: $t_{SS} = 4.5$ billion yr

• age of the Universe (we'll find): $t_0 = 13.7$ billion yr

Q: what's the lifespan of a $0.5M_{\odot}$ star? implications? Q: what's the lifespan of a $10M_{\odot}$ star? implications? Q: implications for main sequence on HR diagram?

Imagine (for simplicity) that:

• our Galaxy has formed stars at a constant rate throughout the age of the Universe (oversimplified!)

Q: what would this mean for the population of Galactic stars today?

Stellar Lifetimes: Implications

Implications:

- $\tau(0.5M_{\odot}) = 80$ billion years \gg age of Universe! \rightarrow all such stars ever born remain alive today!
- $\tau(10M_{\odot}) = 10$ million years \ll age of U., SS

 \rightarrow most such stars have come and gone!

 \rightarrow any massive stars seen today were recently born

So as our Galaxy makes stars

- low-mass stars live "forever" (but are dim)
- high-mass stars die quickly
- ightarrow expect mostly low masses (in a fair sample)
 - but beware bias rare, luminous stars easier to see
- example of "selection effect"

www: HR diagram: nearest vs brightest stars

Theory Building: Stellar Life Cycles

Q: what is involved in making a model of a star's life?

for example, consider a model of the Sun's life

- Q: what physics goes in?
- *Q*: what data needed as inputs and/or checks on model outputs?
- Q: what kind of predictions can such a solar model make?

The Life and Death of a $1M_{\odot}$ Star

Evolution of a $1M_{\odot}$ **Star: Birth**

protostar

raw material: H (\approx 70% of mass), He (\approx 28%), heavy elements (\approx 2%)

in cold molecular cloud

www: Eagle Nebula

'free fall'' collapse (HW 9) most material \rightarrow protostar nonzero angular momentum \rightarrow protoplanetary disk (see solar system origin notes)

protostar contracts \rightarrow heats

- core $T \uparrow$ until hot enough for nuclear reactions to turn on, then
- H burning starts: heat supply
- gas pressure maintained
- \bullet hydrostatic equilibrium achieved \rightarrow star stabilized

13

$1M_{\odot}$ Star Mid-Life: "Main Sequence"

"main sequence" = burn H \rightarrow He in core

most of a star's lifespan spent in this phase

Q: how does star core change in composition during this time? *Q:* how will the Sun respond to this change?

Evolution of the Sun's Luminosity

in star core: $H \rightarrow He$ "burning" \rightarrow over time: H "fuel" \rightarrow He "ash" \rightarrow fuel supply goes down e.g., today, Sun's core < 50% H!

how does core respond to H depletion?

- still need to generate nuclear energy
- but with less fuel, have to burn hotter
- \rightarrow core T goes up
- \rightarrow star responds by *increasing* L!
- *Q:* how would this "move" the Sun on the HR diagram?

 $\stackrel{_{\mathrm{ff}}}{=}$ Today: sun \sim 50% brighter than at birth!