Astro 210 Lecture 33 April 15, 2011

Announcements

- HW 9 due
- HW 10, due in 1 week: computer-based, pick one of two for the theory-inclined: simulate a star for the observation-inclined: cosmology data analysis
- also due in 1 week: OBAFGKM(LT) mnemonic contest win 10 bonus points, and maybe also glamourous prizes
- Hour Exam 2 back today (most did well!)

Last time:

 \vdash

• star luminosity $L \propto M^4$

on HR: main sequence is a sequence of mass

• star lifespan $\tau \propto M^{-3}$ on HR: main sequence also a sequence of *lifespan*

The Sun: Main Sequence Phase

solar evolution on main sequence: $4p \rightarrow {}^{4}He \rightarrow over time$: H "fuel" \rightarrow He "ash" e.g., today, Sun's core < 50% H!

so average particle mass μ *increases*: fewer but heavier

consequences:

N

- pressure $P = nkT = \frac{\rho}{\mu}kT$: larger $\mu \rightarrow$ pressure drop • but Sun interior must still support Sun's weight
- but Sun interior must still support Sun's weight
 ⇒ pressure must stay same
- to maintain P, core contracts & heats \rightarrow larger μ drives T up to compensate: core *hotter*
- fewer particles \rightarrow fewer scatterers
 - \rightarrow light can escape more easily, faster
 - \rightarrow luminosity goes *up*!

main sequence brightening

iClicker Poll: A Helium-Core Sun

What happens when all core H converted to He?

- B the Sun's core contracts
- C the Sun begins to burn helium

the Sun ignites unburnt hydrogen outside core

$1 M_{\odot}$ Star: Old Age

after core H exhausted

- core cools \rightarrow loses pressure support core can't maintain hydrostatic equilibrium
- core contracts!
- H material overlying core aslo contracts, heats new fuel, can begin to burn!

 \rightarrow H burning in ''shell'' around core

 $\rightarrow L \uparrow$

4

• outer layers ("envelope") of star expands

 \rightarrow cools: $T\downarrow$

red giant

www: HR diagram

The Dense Core

core \rightarrow high density ρ contraction slowed by Pauli exclusion principle \rightarrow quantum law: can't put 2*e*'s in same state

at high densities: quantum "degeneracy" pressure resists compression like in ordinary solids

in high-density gas/solid: pressure $P_{degen} = K \rho^{5/3}$ depends only on ρ , not T (\neq ideal gas!)

σ

structure: degenerate core, H-burning shell, envelope

```
core heats \rightarrow He fusion ignites
normal gas: T \uparrow, P \uparrow \rightarrow expand \rightarrow cool
degen. gas: T \uparrow, P const: no exp, cool:
\rightarrow reaction speedup \rightarrow explosion!
[helium flash] (few min)
but note: occurs deep in star \rightarrow hidden by envelope!
```

```
after flash: core He burning

{}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma

\boxed{ash \rightarrow fuel!}

similar to H-burning (main seq) but hotter, faster burn

_{\odot} most red giants in this phase
```

HR Diagram: Comparing Burning Phases

Note: in fair sample of stars: main sequence makes up about 90% of the population red giants make up most of the remaining 10%

www: HR diagram

Q: what does this tell us? hint–imagine snapshot of fair sample of people for example, attendance at White Sox/Cubs

7

HR Diagram and Stellar Life Stages

Main Sequence

- \approx 90% of stars
- hydrogen burning: $4p \rightarrow {}^{4}He$

Red Giants

- $\approx 10\%$ of stars
- helium burning: $3^4 \text{He} \rightarrow {}^{12}\text{C}$

if stars born at roughly constant rate most stars will be seen in longest life phase \Rightarrow main sequence phase longest, most of star life red giant phase $\approx 1/10$ as long

 \odot

Q: what happens when core He exhausted?

$1M_{\odot}$ Star: Death Throes

```
ultimately, core runs out of <sup>4</sup>He
now 2 shells: H- and He- burning
unstable! \rightarrow thermal pulses
(every 10<sup>3</sup> yrs, for a few yrs)
expel mass in "superwind"
hot ejected gas \rightarrow "planetary nebula"
```

www: HST planetary nebulae

hot core exposed! \rightarrow cools rapidly star core is exposed as bare "cinder" supported by degeneracy pressure (electrons)

• very hot, but

6

- very compact \rightarrow small
- \Rightarrow becomes white dwarf

White **Dwarfs**

''stellar corpse'' – leftover after $1 M_{\odot}$ star death and for other low-mass stars too; see below

nearby example: Sirius B

www: X-ray image

- $M = 0.96 M_{\odot}$
- $R = 0.0084 R_{\odot} = 0.8 R_{\text{Earth}}!$
- $\rho = (M/R^3)\rho_{\odot} \approx 2 \times 10^6 \rho_{\odot} = 2 \times 10^9 \text{ kg/m}^3!$ $\Rightarrow 1 \text{ cm}^3 \text{ contains } 2 \text{ tons!}$ **compact**! ultradense!

White Dwarf Structure

white dwarf *not* an ideal gas supported by degenerate electrons \rightarrow ultradense solid equation of state:

$$P = K\rho^{\gamma} \begin{cases} \gamma = 5/3 & \text{``low'' density} \\ \gamma = 4/3 & \text{``high'' density}\rho \gg 10^9 \text{ kg/m}^3 \end{cases}$$
(1)

hydrostatic equilib gives $R^2 P \sim GM^2/R^2$ \Rightarrow use this to eliminate P, relate M and R

Lower density white dwarfs: $\gamma = 5/3$ $GM^2/R^4 \sim KM^{5/3}/R^5$ $\Rightarrow R \propto M^{-1/3}$

 \exists Mass increases \rightarrow radius *decreases!*

High density white dwarfs: $\gamma = 4/3$ for pressure to balance gravity: $GM^2/R^4 \sim KM^{4/3}/R^4$ $\Rightarrow M \sim (K/G)^{3/2}$! mass is indep of R, ρ ! numerically: $M = M_{\text{Chandra}} = 1.4M_{\odot}$

"Chandrasekhar limit!"

Q: what if white dwarf has $M < M_{Chandra}$? Q: what if white dwarf has $M > M_{Chandra}$? if high-density WD has $M < M_{Chandra}$ then pressure (more than) enough to balance gravity \rightarrow WD is stable against collapse

but: if high-density WD has $M > M_{Chandra}$

then pressure not enough to balance gravity

- \rightarrow gravity force not balanced
- \rightarrow star unstable \rightarrow collapses under its own weight!
- \rightarrow catastrophe!

conclusion: Chandrasekhar mass is *maximum* mass of white dwarfs!

 $\ddot{\omega}$ Confirmed! All observed white dwarfs have $M < M_{Chandra}$

Testing Stellar Evolution

recall: evolution depends on mass thus far: looked in detail at $1M_{\odot}$ evolution now need to know: how do other stars evolve?

Beyond $1M_{\odot}$: Low-Mass Stars

since $\tau = 10^{10} \text{ yr}/m^3$ long lifetime if $m < 1M_{\odot}$ $\tau = 14 \text{ Gyr} = \text{age of universe for } m \sim 0.9M_{\odot}$ \rightarrow if m lower, "live forever"

for $m \lesssim 0.08 M_{\odot}$, core too cool to burn H "brown dwarfs" *Q: what (if any) is heat source? how does star evolve?*

Bottom line:

not much going on with low-mass stars

but (by number) most stars are low-mass

high-mass stars are rare...but spectacular...

Lives and Deaths of Stars

a star's life history, death controlled by it mass

 $M < 0.9 M_{\odot}$ history like that of the Sun to date burn H \rightarrow He lifetime > age of universe: live "forever" i.e., none have yet died

 $0.9M_{\odot} < M < 8M_{\odot}$

history like that of the Sun life: burn H \rightarrow He ("main sequence" phase) then "giant" phase burning He \rightarrow C death: eject > 50% of mass as enriched gas—" planetary nebula" leave behind compact object: white dwarf

16

$M > 8 M_{\odot}$

history begins like Sun, but then very different...