Astro 210 Lecture 36 April 22, 2011

Announcements

- HW 10 due
- HW 11 available-last one! due next Friday

Last time:

 \vdash

- neutron stars hypderdense objects resulting from massive star death
- gravity revisited: Einstein equivalence principle
 Q: what's that?
 Q: consequences?
 - Q: how to test?

Light Bending: The Sun

In principle: *all* gravitating objects bend light including you, me, the earth...In practice: need strong gravity source to create effect large enough to observe

Einstein (1915) devised first test: the Sun

- Sun's gravity deflects starlight rays diagram: paths
- the stronger the gravity along the path the bigger the deflection

...in fact, bending angle $\alpha = 4GM_{\odot}/R_{closest}c^2$

 \Rightarrow biggest effect for starlight just "grazing" edge of Sun

N Q: why is this technically challenging to see?
 Q: how to get around the problem?

1919 Eclipse: Give it up for Big Al!

Problem: Sun's glare obscures surrounding starlight Solution: block glare with eclipse!

1919: total solar eclipse in Southern hemisphere
expedition led by Sir Arthur Eddington
* starlight bent! Woo hoo!
* relativistic gravity confirmed!
* Einstein an instant celebrity
www: NYTimes headlines

Now tested many times, and very accurately seen in clusters of Galaxies www: HST gravitational lens Abell 2218

ω

• all starlight bending experiments confirm Einstein!

General Relativity

Einstein's gravity: General Relativity

Newton: matter causes force (gravity) → particles follow curved lines in "flat" (Euclidean geometry) space

Einstein: bold leap, rejected Newton matter causes spacetime to be "curved" → particles follow straight lines ("geodesics") in curved space

space and time dynamic
not fixed once and for all

Black Holes

Laplace (1790's) recall: escape velocity $v_{esc} = \sqrt{2GM/R}$ HW 3: What if star has M, R with $2GM/c^2R > 1$? then $v_{esc} > c$! light cannot escape! \rightarrow black hole

Wrong argument (Newtonian gravitation) ...but right answer!

```
in death of M > 30 M_{\odot}^*: gravity wins collapse unstoppable black hole formed \Rightarrow inevitable part of star formation
```

С

*Exact "threshold mass" for SN \rightarrow BH uncertain

Black Hole Properties

any object of any mass M can (in principle) become a black hole!

size: Schwarzschild radius

$$R_{\rm Sch} = \frac{2GM}{c^2} \tag{1}$$

radius also provides BH "recipe":

- crush object M smaller than $R_{Sch} \rightarrow get BH!$
- example: for mass of Sun $R_{\rm Sch}=2GM_\odot/c^2=$ 3.0 km but actual $R_\odot=7\times10^6~{\rm km}$

 \rightarrow the Sun is not a black hole! (whew!)

σ

• for mass of Earth: $R_{Sch} = 1 \text{ cm!}$

The Black Hole Horizon

Why call R_{Sch} the BH radius? nothing is there!

True, but: R_{Sch} marks "point of no return" horizon: surface enclosing the BH i.e., horizon is surface of sphere w/ radius R_{Sch}

horizon is one-way "membrane" once inside $r \leq R_{Sch}$ nothing can escape...even light! cosmic roach motel!

Hence:

 $\overline{}$

```
no light escapes \rightarrow black
```

but nothing else moves as fast \rightarrow nothing else escapes \rightarrow hole

Life Near a Black Hole

Experiment: lower astronaut (Jodie) near R_{Sch} we are at mission control, far away ($r_{us} \gg R_{Sch}$) communicate w/ light signals

when viewing photons (or clock ticks) emitted at $r_{\rm em}$, observed at $r_{\rm obs}$ general rule:

$$\frac{\Delta t_{\rm obs}}{\Delta t_{\rm em}} = \frac{\lambda_{\rm obs}}{\lambda_{\rm em}} = \sqrt{\frac{1 - R_{\rm Sch}/r_{\rm obs}}{1 - R_{\rm Sch}/r_{\rm em}}}$$
(2)

What do we see?

 ∞

obs=us: $r_{obs} \rightarrow \infty$; em=Jodie: $r_{em} > R_{Sch}$

• Jodie's watch: $\Delta t_{\rm obs}/\Delta t_{\rm em} = 1/\sqrt{1-R_{\rm Sch}/r_{\rm em}} > 1$

 $\rightarrow \Delta t_{\rm obs} > \Delta t_{\rm em}! \text{ appears to tick slow! time dilation!}$ • wavelengths: $\lambda_{\rm obs} > \lambda_{\rm em}! \text{ redshift !}$ *Q: and Jodie?*

What does Jodie see?

intuitively: expect inequalities to reverse...and they do obs=Jodie: $r_{obs} > R_{Sch}$; em=us: $r_{em} \rightarrow \infty$:

- our watches: $\Delta t_{\rm obs}/\Delta t_{\rm em} = \sqrt{1-R_{\rm Sch}/r_{\rm em}} < 1$
 - $\rightarrow \Delta t_{\rm obs} < \Delta t_{\rm em}!$ appears to tick fast!
- wavelengths: $\lambda_{obs} < \lambda_{em}!$ blueshift!

When Jodie returns:

then $r_{\rm em} = r_{\rm obs}$

- $\Delta t_{obs} = \Delta t_{em}$: her watch ticks at same rate as ours!
- but the *elapsed time* is shorter on her watch and so she is younger than her twin!

iClicker Poll: Black Holes

From a safe distance, you drop an object (nuclear waste? Voldemort?) on an isolated black hole.

Will you see it fall in?

- A yes, no matter your distance from the hole
- B maybe, depends on how far you are from the hole
- C no, because it never actually falls in
- D no, although it does actually fall in

Life Inside a Black Hole

once inside R_{Sch} , no getting out all matter \rightarrow center \rightarrow point (?): "singularity" i.e., finite mass M in volume $V = 0 \rightarrow$ density $\rho \rightarrow \infty$! D'oh! known laws of physics break down

A few remarks:

- we know that all observers travel to center
- don't know what happens once there
- regardless, certain that you die if you go in
- in a way, it's not a relevant question, since can't get info out even if went in (no Nobel Prize!)
- once crushed to < 10⁻³³ cm, quantum mechanics important i.e., need quantum theory of relativistic gravity!
 ... but there isn't one...yet
- if you have quantum gravity theory, please tell instructor and we'll publish it (your name may even go first!)

iClicker Poll: You Thought the BP Spill Was Bad

Experiment:

Industrial accident causes Sun to be crushed to black hole Spokesdroid from Interplanetary BP: "Mistakes were made."

Vote your conscience!

What happens to Earth's orbit?

- A nothing: same orbit!
- B spirals in: aaargh!
- $\frac{1}{2}$ C stronger gravity, but does not fall in

Life Far From a Black Hole

No change in orbit!

Newtonian explanation: wrong in detail, but correct spirit: when **outside** of Sun, gravity acceleration is $a = GM_{\odot}/r^2$: only M matters gravity same as if Sun were $1M_{\odot}$ BH

gravity outside star not increased by becoming BH
no more pull than before!
→ "black hole threat" not any more dangerous than
"nearby star gravity" threat

So sleep well tonight!

Note:

 $\tilde{\omega}$ so far, BH discussed as theoretical objects Q: how to "see" one to test theory? No light escapes!!

Evidence for Black Holes

recall: in death of $M > 30 M_{\odot}$: gravity wins, collapse unstoppable black hole formed \rightarrow should be inevitable part of star formation

how detect? no light emitted from BH, but: can observe matter interacting with BH

X-ray binaries: stellar-mass black holes (few M_{\odot})

massive star born in bound system with less massive star larger star \rightarrow SN \rightarrow BH left behind if supergiant companion, close orbit: some gas falls onto BH \rightarrow compressed, heated \rightarrow X-rays

what you see: giant star orbiting unseen massive companion, and emitting X-rays

www: Cygnus X-1