Astro 210 Lecture 4 Jan 26, 2011

Announcements

- HW1 posted; due at *start* of class Friday note juicy 10-point bonus (requires planning & digital camera)
- Office hours: Instructor 2-3pm Wed; TA 10:30-11:30am Thurs
- register your iClicker; link on course webpage
- first Planetarium show one week from today info online: reservations, schedules, directions, report form
- if this is your first class: see me afterward!

Phases of the Moon

 $\begin{array}{cccc} \mathsf{new} & \to & \mathsf{waxing\ crescent} & \to & \mathsf{first\ quarter} \\ & \uparrow & & & \downarrow \\ \mathsf{waning\ crescent} & & & \mathsf{waxing\ gibbous} \\ & \uparrow & & & \downarrow \\ \mathsf{third\ quarter} & \leftarrow & \mathsf{waning\ gibbous} & \leftarrow & \mathsf{full} \end{array}$

diagram: phases as seen on sky

Q: what is basic physical origin of phases? Why do we sometimes see only part of the Moon illuminated?

phases simple but beautiful
basic effect: see illuminated moon from different angles
phases not due to Earth blocking sunlight
 i.e., phases are not eclipses!

diagram: top view, sky views

excellent exercise in translating situation in 3-D space

to 2-D projection on sky

for each Sun-Earth-Moon position, ask:

Q: how much of Moon's surface is illuminated by the Sun?

Q: how much of the illuminated portion can we see from Earth?

Q: what does this look like in the sky?

ω

iClicker Poll: Moon Phase and Rise Time

Note: each phase rises and sets at a specific time of day

When does the 1st Quarter moon rise?

Α	I
/ \	

4

Phases and Latitude

Note: lunar phase pattern depends on observer latitude i.e., which from hemisphere you look

all of the above discussion was for *northern* observers

Q: what aspects of the situation change for southern observers? *Q*: what aspects do not change

southern observers: "upside-down" relative to north

(and vice versa)

→ moon image same (illuminated vs dark portion identical) but "upside-down"

unchanged:

- waxing or waning nature of phase (i.e., increasing or decreasing illumination)
- type of phase (crescent, gibbous, etc)

different:

- southern observers see reversed moon right ↔ left relative to northern observers
- e.g., waxing crescent illuminated on *left* side waning gibbous illuminated on *right* side
- For all homework, exam problems: assume *northern* observers on earth (and on the Moon!)

my suggestion: practice! do the experiment in real life! when moon up: point to moon, then sun, look at angle!

complete cycle of lunar phases in 29.5 days \Rightarrow 3rd fundamental measure of time: **month of phases**

Any questions?

Eclipses

Lunar Eclipse: moon in earth's shadow diagram: Sun, Earth, Moon

www: lunar eclipses

note: can still see Moon even when totally in Earth's shadow! appears much dimmer, and red

Q: what's going on? why the red color?

note that *direct* sunlight is totally blocked so light must be indirect, in fact: scattered light from earth's atm. red b/c blue is scattered more strongly, so only red is left in other words:

glow is from all the sunrises and sunsets on Earth!

solar eclipse: observer in moon's shadow Note: Earth larger than Moon *Q: what does this immediately imply for solar eclipses?* since Moon smaller than earth, whole earth cannot be in shadow in fact, only a small region, \sim 100 mi, at a given time "eclipse path"

interesting coincidence: Moon and Sun have almost identical angular size and what's more: Moon's distance changes (not circular orbit) www: moon perigee/apogee comparison

together this means: two kinds of solar eclipses

- www: annular eclipse
- www: total eclipse
- www: looking back on Earth's shadow

 $^{\scriptsize 6}$ Note: there is *not* a solar or lunar eclipse every month!

if Moon's orbit plane around Earth were same as Earth's around the Sun (i.e., the ecliptic) then *would* have eclipses monthly

the fact that we *don't* means that the two orbits are *not* coplanar!

 \star moon's orbit plane slightly tilted w.r.t. ecliptic so moon is typically below or above ecliptic

www: eclipse diagram

only eclipse when Moon orbit crosses ecliptic plane happens *twice* a year \rightarrow "season of eclipses"

geometrically: intersection of planes is a *line* and intersection of line with closed orbits is 2 points

Note: eclipse "season" last about \sim 1 month i.e., time window of alignment about equal to Moon orbit period \rightarrow can sometimes have two or three eclipses in same season

Next eclipses: partial solar June 1 and July 1, lunar June 15 watch over summer, impress someone with your ASTR210 skills!

Any questions?

12

Planets

Known since ancient times: Mercury, Venus, Mars, Jupiter, Saturn

Discovered later, with telescopes: Uranus, Neptune, Pluto

daily motion: westward w.r.t. horizon i.e., .rise in east, set in west

w.r.t. fixed stars: always stay close to ecliptic usually move eastward www: SOHO LASCO planet movie but sometimes westward: "retrograde motion" www: retrograde motion of Mars 50 motion not uniform in angular speed in fact, not uniform even when in "direct" (non-retro) motion retrograde motion not random in occurrence! key patterns observed:

- for each planet, retrograde onset is *periodic* with different periods for different planets
- retrograde occurence *correlated* with position relative to Sun:

Mercury, Venus	Mars, Jupiter, Saturn (& others)
always stay close to sun on sky	can move freely along ecliptic
<i>never</i> seen opposite Sun	can be opposite sun
retro when in conjunction	retro when in opposition
(i.e., when closest to Sun on sky)	(i.e., opposite Sun on sky)

These Patterns Cry Out For Explanation

you may have noticed—I've heaped a lot of facts on you. Do you have to memorize them? Do *I* have them memorized? No! There's a simpler way of remembering.

 \rightarrow build a **model** of the solar system's geometry and dynamics organize, explain all of this data!

Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house. —Henri Poincaré

Crucial point:

when making model for motions of planets have to explain *all* observed features;

turns out the retrograde motion, in all its detail, gave people the hardest time...

Building a Scientific Model

Scientific Models must:

- explain observations
- predict future observations

The principle of science, the definition, almost, is the following: *The test of all knowledge is observation.* Experiment is the *sole judge* of scientific "truth."

The first principle is that you must not fool yourself—and you are the easiest person to fool.

—Richard Feynman