Astro 210 Lecture 41 May 4, 2011

Announcements

- Final Exam: Monday May 9, 1:30–4:30 pm info online
- ICES course evaluation available online *please* fill it out—I *do* read & use results

Last time: the dynamic universe

- galaxy motion: v = Hd Hubble's law *Q: what's v? d? H?*
- *Q*: interpretations?
- analogies: www: balloon, www: raisin bread
- possible cosmic fates *plot* a vs t
 - ▷ gravity > inertia, recollapse: "big crunch"
 - ▷ gravity < inertia, expand forever: "big chill"
 - \triangleright gravity = inertia, $H \rightarrow 0$ as $t \rightarrow \infty$ (still big chill)

Н

Final iClicker Poll: Your Preferred Cosmic Fate

We will see: data now seem to foretell actual cosmic fate But! final answer not known with 100% certainty

So: regardless of data, if you have to pick one of these Which cosmic fate do you prefer?

expand forever: Big Chill, $H \rightarrow 0$ as $t \rightarrow \infty$

C	

recollapse: Big Crunch

Ν

Expansion and Gravity

Galaxies have mass \rightarrow gravitate \Rightarrow gravity changes motion from free-body coasting \Rightarrow expansion rate must change with time Since gravity attractive, expect *deceleration* \rightarrow just like upgoing pop fly

....BUT...

Current data:

Universe is *accelerating* !?!?

What does this mean?

need repulsive force to overcome gravity

 $^{\omega}$ only important on cosmo scales

A huge surprise! A huge mystery! What is dark energy? Will it change with time? Perhaps related to very high energy processes (quantum gravity)? Perhaps related to goings-on in very early Universe?

What little we do know:

if dark energy takes simplest form

("cosmological constant")

then dark energy force between particles (galaxies)

is $F_{\mathsf{DE}} \propto r$

Q: what does this imply for fate of U.?

4

Dark Energy and a Dark Future

dark energy force $F_{DE} \propto r$ \rightarrow force *increases* as particles move apart \rightarrow more repulsion as galaxies recede so acceleration only increases with time! \rightarrow U. fate is to expand forever!

if dark energy acts as we think (a big if!) we are fated to a "Big Chill"

Taking the Temperature of the Universe

What does it mean to live in expanding universe?

today: Universe has very low density $\rho_0 = 10^{-26} \text{ kg/m}^3$ in past: everything closer together \rightarrow density higher

very early U. also very dense:

- particles interact/collide
- matter "thermalized" \rightarrow U should have *temperature*
- *Q*: How can we measure *T* of universe?
- Q: Where should we look to measure T?
- *Q*: How should *T* vary from place to place (at any one time)?

σ

Cosmic Temperature Measured

if Universe was thermalized, has $\boldsymbol{T},$ then

- should contain blackbody radiation
- this radiation should be everywhere (homogeneous, isotropic) prediction made in early 1950's, forgotten(!) until 1965

Measure T from spectrum www: Penzias & Wilson radiation everywhere cosmic microwave background radiation (CMB)

universe spectrum is very accurate blackbody www: CMB spectrum, errors \times 100 $T = 2.728 \pm 0.004$ K

 $\overline{}$

Q: what does this discovery prove?

cosmic blackbody shows

U once thermalized \rightarrow once very dense

- \Rightarrow needed hot dense phase: evidence for big bang!
- if had microwave eyes, sky very bright in radiation from big bang
- 10% of "snow" on TV is radiation from big bang

Big Bang Nucleosynthesis

```
Theory
atomic nuclei made of protons p and neutrons n
bound together by nuclear force
at high temperature \rightarrow early times
U so hot, collisions so violent, that nuclei "ionized" into n, p
then U cools until n, p \rightarrow nuclei
```

```
t = 1sec - 3 min: kT = 10^{10} K to 10^{6} K
nuclei "ionized" (n & p only) → "neutral" (combined in nuclei)
24% helium
traces of D, <sup>3</sup>He, <sup>7</sup>Li
76% "leftover" protons (<sup>1</sup>H)
```

Observationmeasure He in universe: $\rightarrow 24\%$ matches theory!

theory & obs. agree!

 \rightarrow big bang theory works well back to t=1s !

The Cosmic History of Matter: Big Bang to Now

1. Big bang nuke: light elements

2. Universe cools, matter clumps stars, Galaxies born

stars:
 all heavy elements

Solar system, and you: products of

- big bang (H, He, Li)
- low mass stars (example: C from red Giants)
- high mass stars (example: O, Fe from supernovae)

11

a cosmic symphony; we are results

another perspective: cosmologists M. Python *"The Galaxy Song" from* The Meaning of Life (1983)

The Very Early Universe

before big bang nuke:

- $T > 10^{10}$ degrees
- very high-energy collisions:

study with particle accelerators

- ▷ Fermilab, Batavia IL (Chicago suburb–go visit!)
- Large Hardonic Collider (LHC), Geneva Switzerland to visit)

www: Fermilab

- www: tunnel
- www: LHC
- www: collision

13

Inner Space and Outer Space

- 1. Fermilab and LHC are *microscopes* probing nature on the smallest scales
- 2. Fermilab and LHA are also *telescopes* probing conditions of universe at kT = 1 TeV = 10^{12} eV $\rightarrow t = 10^{-12}$ sec

2. Early Universe:
→ "poor man's accelerator"
exotic particles created
perhaps these are dark matter?
weakly interacting massive particles: WIMPs

deep connections between
the very small and
the very large

Remaining Questions

To name a few:

- what is the dark energy?
- how will the dark energy influence the fate of the Universe?
- what is the dark matter?
- how did galaxies form?
- when did the first stars form? the first black holes? what are their observable "fossils" today?
- what happened at t = 0 (singularity)?

