$$
\begin{gathered}
\text { Astro } 210 \\
\text { Lecture } 6 \\
\text { Jan 31, } 2011
\end{gathered}
$$

Announcements

- HW2 due Friday

HW1 Q8 bonus still available

- register your iClicker; link on course webpage
- Planetarium shows begin tonight weather permitting check status at www. parkland.edu
- if this is your first class: see me afterward!

Last time: a tale of two cosmologies

- Geocentric

Q what's that? how does it explain sunrise? retrograde?

- Heliocentric

Q what's that? how does it explain sunrise? retrograde?
Today: geocentric vs heliocentric cagematch!
in youth: observed "nova stella" (supernova) www: Tycho sketch \rightarrow heavens corruptible!
observed Sun, Moon, planets for 20 years: careful, accurate data but not a good number cruncher
\rightarrow like any good professor: made grad student do the work!

Johannes Kepler 1571-1630: Harmony of the Worlds

Analyzed Tycho's data for 20 years(!), especially Mars motions used heliocentric model with circles but observations didn't quite agree
a small error (few arc min!) remained...took seriously
$N \rightarrow$ after years of trial \& error:
completely \& accurately described planet orbits

Kepler I: Law of Ellipses

each planet's orbit is an ellipse with the sun at one focus

in a plane:
choose two points (foci) ellipse: set of all points for which sum $L_{1}+L_{2}$ of distances to foci is constant
ω

$$
L_{1}+L_{2}=\text { constant }
$$

Ellipse Anatomy

- two foci
- semi-major axis a
- focal length c
- semi-minor axis

$$
b=\sqrt{a^{2}-c^{2}}
$$

any ellipse fully characterized by:

- a and eccentricity $e=c / a$
Q : what do we get for $e=0 ? e=1 ?$

Kepler I: orbit is ellipse with sun at one focus

Orbit anatomy
aphelion: farthest point from Sun perihelion: closest point to Sun

Q: what is aphelion distance in terms of a and e ?

$$
\begin{equation*}
r_{\mathrm{ap}}=a+c=a+a \frac{c}{a}=(1+e) a \tag{1}
\end{equation*}
$$

v Q: If the Sun's at one focus, what's in the other focus?
Q: What does Kepler I not say about orbits?

At the other focus: nothing! (sorry!)

Note: Kepler I only gives orbit shape
but says nothing about how orbit evolves in time \rightarrow need more info to fully describe orbit, hence...

Kepler II: Law of Equal Areas

a straight line from the planet to the sun sweeps out equal areas in equal times
diagram: sketch areas
note that this amounts to telling about speed of planet

iClicker Poll: Kepler II and Planet Speed

When does a planet move the fastest?

A When it is closest to the Sun

B When it is farthest from the Sun

C Trick question! In vacuum of space, planet speeds must be constant

WWW: area animation

Q: This still doesn't fully characterize an orbits-why not?

Kepler I gives orbit shape in space Kepler II gives orbit evolution over time
but haven't yet connected the two:
how does spatial character (e.g., semimajor axis a) relate to time character (e.g., period P)?

Need one last law...

Kepler III: The Mighty Equation

period P and a are related:

$$
P^{2} \propto a^{3}
$$

$\Rightarrow P^{2} / a^{3}=$ const, and since must hold for Earth:

$$
\begin{equation*}
P_{\mathrm{yrs}}^{2}=a_{\mathrm{A} U}^{3} \tag{2}
\end{equation*}
$$

Q: ok for earth?
where P written in years, a in AU
Fine print: eq. (2) valid only for these units, and for orbits around Sun

Very powerful! e.g.:
Asteroids exist with orbits inside 1 AU (and some cross 1 AU!!)
www: inner solar system objects--in real time!

iClicker Poll: Kepler III

Kepler III: $P_{\mathrm{yrs}}^{2}=a_{\mathrm{AU}}^{3}$
Consider an asteroid with an orbit entirely inside 1 AU Is its period longer or shorter than a year?

A $P>1$ yr, no matter eccentricity e

B $P<1 \mathrm{yr}$, no matter what e

C can't answer without knowing e

Kudos to Kepler

Several points worth noting...

* An amazing discovery-mathematics underlies the workings of the cosmos!
* Keplers laws remain accurate to this day-indeed, in slightly generalized form will show up in many (most!) situations where motions are controlled by gravity
* Yet note what we still don't have:
an understanding of why Kepler's laws hold
\rightarrow that is, what is the mechanism that makes
planets move this way
...for that, need to wait for Kepler's successors...

Galileo Galilei

First to use telescope in Astronomy
www: Galileo shows scope to Duke
contributions:

- mountains on the moon
- moons of Jupiter
- sunspots
- phases of Venus
www: Venus phase animation
observations contradicted Aristotle supported Copernicus
"paradigm shift" (Kuhn)
radical change in outlook/conceptual framework

Galileo brilliant but also arrogant and politically naive
\rightarrow offended powerful people, including the Pope, a former ally tried in Inquisition and forced to recant geocentric view

- his work, Copernicus, Kepler banned until 1832
- official semi-apology ("mistakes were made") 1992(!) complex situation: crackdown as much political as theological

Note:

1. really not at all obvious to people that Earth orbits Sun
2. the paradigm shift was difficult and threatening

With earth removed from center of universe, Aristotle's division of terrestrial and heavenly no longer made sense as physics
\Rightarrow need to re-examine "natural motion"
\Rightarrow search for force that keeps planets in place
\Rightarrow Galileo's experiments

Dynamics \& Gravity

Galileo not only great astronomer
but also a great physicist
paved way for Newton's dynamics by study of
two special cases of motion

1. "free body" - no external influences
natural motion: coast in straight line with const speed
\rightarrow retain current state of motion
\rightarrow bodies have inertia
2. "free fall" - when only influence is gravity

Galileo recognized another key motion
Demo: Tower of Pisa expt
$\stackrel{\rightharpoonup}{\sigma} \rightarrow$ constant acceleration indep of mass!
$a=g, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Galilean free fall: constant acceleration $a=g$
So speeds change, linear with time

$$
\begin{equation*}
v=v_{0}+g t \tag{3}
\end{equation*}
$$

if start from rest, $v_{0}=0$, and then we have $v=g t$

Distance traveled is quadratic in time (starting from rest):

$$
\begin{equation*}
d=\int_{0}^{t_{f}} d t v(t)=\int_{0}^{t_{f}} d t g t=\frac{1}{2} g t_{f}^{2} \tag{4}
\end{equation*}
$$

Example: how long does it take to drop from table to floor?
$d \sim 1 \mathrm{~m} \Rightarrow t^{2}=2 d / g=2 \times 1 \mathrm{~m} / 9.8 \mathrm{~m} / \mathrm{s}^{2} \sim 0.2 s^{2} \Rightarrow t \sim 0.45 \mathrm{~s}$
$\stackrel{\rightharpoonup}{\nu}$ motion near Earth's surface well-described this way (for speeds at which air resistance negligible)

