Astro 210
 Lecture 8
 Feb 4, 2011

Announcements

- HW2 due
apologies for the erratum
- HW3 available, due next Friday

HW1 Q8 bonus still available

- register your iClicker; link on course webpage
- Planetarium: shows Mon \& Tues of next two weeks
- if this is your first class: see me afterward!

Last Time: Two of the All-Time Greats

Galileo: Astronomer

Kepler's Laws

1. planet orbits are ellipses, with Sun at one focus
2. orbits sweep equal areas in equal times
3. $P_{\mathrm{yr}}^{2}=a_{\mathrm{A} U}^{3}$
these completely and precisely characterize planet orbits

Galileo: Physicist
isolated and studied important special cases of motion

- free body Q : what is one? what's the motion?
- free fall Q: what's that? what's the motion?

Sir Isaac Newton 1642-1727 English

Newton's Laws of Motion - "T-Shirt Review"

Newton I

a free body $=$ no net force (i.e., no acceleration) motion: constant velocity \rightarrow same speed and direction

Mathematically:
displacement \vec{r}, velocity \vec{v}, acceleration \vec{a} are vectors

* displacement $\vec{r}=(x, y, z)$, distance $r=|\vec{r}|=\sqrt{\vec{r} \cdot \vec{r}}$
* velocity $\vec{v}=d \vec{r} / d t$, speed $v=|\vec{v}|$
* acceleration $\vec{a}=d \vec{v} / d t$, magnitude $a=|\vec{a}|$

Note: time derivative of vector $\vec{v}(t)=\left[v_{x}(t), v_{y}(t), v_{z}(t)\right]$
is $d \vec{v} / d t \equiv \dot{\vec{v}}=\left[\dot{v}_{x}(t), \dot{v}_{y}(t), \dot{v}_{z}(t)\right]$
where "overdot" $=d / d t$

Newton I

a free body $=$ no net force (i.e., no acceleration) motion: constant velocity \rightarrow same speed and direction
mathematically:
acceleration $\vec{a} \equiv \dot{\vec{v}}=0$
\Rightarrow velocity $\vec{v}_{\text {free }}(t)=\vec{v}_{0}=$ const

Newton I:

- encodes Galileo's "free body" behavior
- establishes existence of inertial frames

Newton II

acceleration is proportional to force, and inversely proportional to body's mass
$\Rightarrow a=F / m$ or $F=m a$
or $F=d p / d t$, with $p=m v$ (momentum)
or in 3-D:

$$
\begin{gather*}
\vec{p}=m \vec{v} \tag{1}\\
\vec{F}=d \vec{p} / d t \tag{2}
\end{gather*}
$$

Newton II is machine to predict the future!
Q: why? how? what needed for Newtonian fortunetelling?

Fortunetelling (and Archæology!) with Newton II:
$\dot{\vec{v}}=\vec{F} / m$: force changes speed
\rightarrow after time interval δt, velocity changed by $d \vec{v}=\vec{F} \delta t / m$
\rightarrow carries particle to new position
\rightarrow where it feels new force
\rightarrow which changes speed
...lather, rinse, repeat

So: if we know

- present position \& speed (initial conditions)
then we can predict the future and reconstruct the past:
- determine the nature of the forces
- apply Newton II and turn mathematical crank
- solve particle trajectory for all time-past, present, future!

Newton III

"action-reaction"
jurisdiction: forces between objects
the rule:
when one body exerts force on another
the other body exerts force of equal magnitude but opposite direction on the one

$$
\begin{align*}
\vec{F}_{12} & =-\vec{F}_{21} \tag{3}\\
1 \text { on } 2 & =-2 \text { on } 1 \tag{4}
\end{align*}
$$

note magnitudes same: $\left|F_{12}\right|=F_{12}=F_{21}$
www: jumpshot

Newton Gravitation

Newton's Law of Gravitation
a force, gravity, exists between any two objects having mass depends on masses M, m and
distance \vec{r} between centers
diagram: 2-body forces
coordinates: centered at M; then force on m is

$$
\begin{equation*}
\vec{F}=-G \frac{M m}{r^{3}} \vec{r}=-G \frac{M m}{r^{2}} \widehat{r} \tag{5}
\end{equation*}
$$

where $r=|\vec{r}|$, and $\hat{r}=\vec{r} / r$ is a radial unit vector
G is Newton's constant: universal-applies everywhere! but has to be determined experimentally Q : how?
expt: $G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{s}^{2}$

Q: find acceleration on earth surface?
gravitational acceleration on surface of earth $=\oplus$ for body of "test" mass m :

$$
\begin{align*}
a & =\frac{F}{m}=\frac{1}{m} G \frac{m M_{\oplus}}{R_{\oplus}^{2}}=G \frac{M_{\oplus}}{R_{\oplus}^{2}} \tag{6}\\
& =6.7 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kgs}^{2} \frac{6.0 \times 10^{24} \mathrm{~kg}}{\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2} \tag{7}
\end{align*}
$$

Note:

- test mass m cancels! as Galileo found experimentally!
- that is: inertial mass $=$ gravitational coupling

Not obvious! no reason why need to be identical
${ }^{\circ}$ •mass m and weight F different things

iClicker Poll: Weightlesses in Space?

Consider an astronaut orbiting Earth on the Space Shuttle Is she weightless?

A yes

B no

C depends on whether the rockets are firing

Note larger issue:
cosmic context requires rethinking "homegrown" intuition

Angular Momentum

For point mass, angular momentum defined as:

$$
\begin{equation*}
\vec{L}=\vec{r} \times \vec{p}=m \vec{r} \times \vec{v} \tag{8}
\end{equation*}
$$

i.e., using cross product
look at time change:

$$
\begin{align*}
\frac{d}{d t} \vec{L} & =m \dot{r} \times \vec{v}+m \vec{r} \times \dot{v} \tag{9}\\
& =m \vec{v} \times \vec{v}+m \vec{r} \times \vec{a} \tag{10}\\
& =\vec{r} \times \vec{F}=\vec{\tau} \quad \text { torque } \tag{11}
\end{align*}
$$

angular counterpart of Newton II:

- net (linear) force changes linear momentum
\because - net twisting force $=$ torque changes angular momentum

Gravity and Angular Momentum

angular momentum changed by net torque

$$
\begin{equation*}
\frac{d}{d t} \vec{L}=\vec{r} \times \vec{F} \tag{12}
\end{equation*}
$$

when force is due to gravity, torque:

$$
\begin{equation*}
\vec{\tau}=\vec{r} \times \vec{F}=-G \frac{m M}{r^{3}} \vec{r} \times \vec{r}=0 \tag{13}
\end{equation*}
$$

so if force is gravity, then

$$
\begin{equation*}
\frac{d}{d t} \vec{L}=0 \tag{14}
\end{equation*}
$$

and thus $\vec{L}=$ const:
$\stackrel{\sim}{\sim}$ angular momentum is conserved!
Q: what about gravity force gauranteed this?

What Keeps the Earth in Orbit?

circular orbit \rightarrow centripetal accel.
angular speed $d \theta / d t=\omega=2 \pi / P=$ const
$\vec{a}_{c}=-\omega^{2} \vec{r}=-\frac{v^{2}}{r} \hat{r}$
diagram: show $\vec{v}, \vec{r}, \vec{a}$

Newton II: acceleration demands net force
but Newton gravity supplies a force!
\rightarrow Newtonian gravity is crucial and necessary ingredient for understanding the dynamics of planetary motion but have to see how the detailed predictions compare with observation

Program:

- assume Newtonian gravity controls planetary motion
- that is, for any planet let $\vec{F}_{\text {net }}=\vec{F}_{\text {Sun-planet }}$
- input this into Newton's Iaws
- turn mathematical cranks \rightarrow predict orbits
- compare predictions with observation

Solutions: Orbits

For attractive inv. sqare force, orbits are cross sections of cone:

- circle
- ellipse
- parabola
- hyperbola
- line

Circle eccentricity $e=0$
at each point:
$F=m a=m v_{\mathrm{C}}^{2} / r$
$\Rightarrow G M m / r^{2}=m v_{\mathrm{C}}^{2} / r$
\Rightarrow circular orbits have speed $v_{\mathrm{C}}=\sqrt{\frac{G M}{r}}$
\forall example: find circular speed 1 AU from Sun
$v_{\mathrm{C}}=3 \times 10^{4} \mathrm{~m} / \mathrm{s}$

Kepler from Newton

Kepler I: Orbits are ellipses
Newton: bound orbits due to gravity are ellipses: check!

Kepler II: Equal areas in equal times

Newton: consider small time interval $d t$
move angle $d \theta=\omega d t$
sweep area
diagram: top view: path, $d \theta, \vec{r}, \vec{v}, \vec{v}_{t}$

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} d \theta=\frac{1}{2} r^{2} \omega d t \tag{15}
\end{equation*}
$$

but $\omega=v_{\theta} / r$, where $\overrightarrow{v_{\theta}} \perp \vec{r}$
\Rightarrow swept area

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} \frac{v_{\theta}}{r} d t=\frac{1}{2} r v_{\theta} d t \tag{16}
\end{equation*}
$$

\Rightarrow swept area

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} \frac{v_{\theta}}{r} d t=\frac{1}{2} r v_{\theta} d t \tag{17}
\end{equation*}
$$

finally, $r v_{\theta}=|\vec{r} \times \vec{v}|=|\vec{L}| / m$
Q: why?, so

$$
\begin{equation*}
d A=\frac{1}{2} \frac{L}{m} d t \tag{18}
\end{equation*}
$$

Woo hoo! were' home free! Q : why?

But $L=$ const for radial force $(\vec{r} \times \vec{F}=0)$ SO

$$
\begin{equation*}
\frac{d A}{d t}=\frac{L}{2 m}=\text { const } \tag{19}
\end{equation*}
$$

Kepler II! \rightarrow comes from ang. mom. cons.!

