> Astro 210
> Lecture 9
> Feb 7, 2011

Announcements

- HW3 due Friday

HW1 Q8 bonus still available

- iClicker scores to date are posted
- Planetarium: new shows added registration, report form, info online

Homework, Collaboration, and Academic Honesty

From the course Syllabus, emphasis added:

Discussing course material with your classmates is in general not only allowed but in fact a good idea. However, each student is expected to do his or her own work. On homework, you may discuss the questions and issues behind them, but you are responsible for your own answers.

It should be obvious but:
you are not to consult homework solutions from previous semesters

Last Time: Sir Isaac Weighs In

Newton's Laws of motion
I. inertia Q : just a special case of Newton II?
II. $\vec{F}=m \vec{a} Q$: fortunetelling \& archæology?
III. action-reaction

Q: when/where/to what do Newton's Iaws of motion apply?

Newtonian Gravitation
Q: magnitude of gravity force between masses m and M with distance r ?
Q : direction of the force?

Kepler from Newton

Kepler I: Orbits are ellipses
Newton: bound orbits due to gravity are ellipses: check!

Kepler II: Equal areas in equal times

Newton: consider small time interval $d t$
move angle $d \theta=\omega d t$
sweep area
diagram: top view: path, $d \theta, \vec{r}, \vec{v}, \vec{v}_{\theta}$

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} d \theta=\frac{1}{2} r^{2} \omega d t \tag{1}
\end{equation*}
$$

but $\omega=v_{\theta} / r$, where $\overrightarrow{v_{\theta}} \perp \vec{r}$
\Rightarrow swept area

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} \frac{v_{\theta}}{r} d t=\frac{1}{2} r v_{\theta} d t \tag{2}
\end{equation*}
$$

\Rightarrow swept area

$$
\begin{equation*}
d A=\frac{1}{2} r^{2} \frac{v_{\theta}}{r} d t=\frac{1}{2} r v_{\theta} d t \tag{3}
\end{equation*}
$$

finally, $r v_{\theta}=|\vec{r} \times \vec{v}|=|\vec{L}| / m$
Q: why?, so

$$
\begin{equation*}
d A=\frac{1}{2} \frac{L}{m} d t \tag{4}
\end{equation*}
$$

Woo hoo! were' home free! Q : why?

But $L=$ const for radial force $(\vec{r} \times \vec{F}=0)$ SO

$$
\begin{equation*}
\frac{d A}{d t}=\frac{L}{2 m}=\text { const } \tag{5}
\end{equation*}
$$

Kepler II! \rightarrow comes from ang. mom. cons.!

iClicker Poll: Orbits and Angular Momentum

Consider two objects at 1 AU :

- a planet in a circular orbit
- a spacecraft moving directly towards the Sun

Which has the larger magnitude of angular momentum?

A the planet

B the spacecraft

C either, depending on the speed of the spacecraft

Kepler III: $a^{3}=k P^{2}$
Newton: can prove generally for elliptical orbits
bad news: price is lotsa algebra
good news: simple to do for circular orbits circular $\rightarrow r=a$, and $v^{2}=G M / a$ but also $v=2 \pi a / P Q$: why?

$$
\begin{align*}
v^{2}=\left(\frac{2 \pi a}{P}\right)^{2} & =\frac{4 \pi^{2} a^{2}}{P^{2}} \tag{6}\\
& =\frac{G M}{a} \tag{7}\\
\Rightarrow a^{3} & =\left(\frac{G M}{4 \pi^{2}}\right) P^{2} \tag{8}
\end{align*}
$$

check!
∞
bonus: $k=G M / 4 \pi^{2}$ depends on mass of central object \rightarrow same k for all planets

Energy

For "test" particle m moving due to gravity of M Gravitational potential energy: Q : why "potential"? $P E=-G M m / r$

Kinetic energy:

$$
\begin{equation*}
K E=\frac{1}{2} m \vec{v}^{2}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)=\frac{1}{2} m \dot{\vec{r}}^{2} \tag{9}
\end{equation*}
$$

Total energy:
$T E=K E+P E=-G M m / r+\frac{1}{2} m \dot{\vec{r}}^{2}$
key result: $d(T E) / d t=0$
\rightarrow total energy conserved!

- that is: value of $T E$ the same for all time!

Orbits Revisited

Bound orbits (circle \& ellipse): in polar coordinates

$$
\begin{equation*}
r(\theta)=\frac{\left(1-e^{2}\right) a}{1+e \cos \theta} \tag{10}
\end{equation*}
$$

Circle radius $r=a=$ const, eccentricity $e=0$ recall: circular orbit has constant speed $v_{\mathrm{C}}^{2}=G M / r$

$$
\begin{align*}
P E & =-\frac{G M m}{r}<0 \tag{11}\\
K E & =\frac{1}{2} m v_{\mathrm{c}}^{2}=\frac{1}{2} m \frac{G M}{r}=\frac{1}{2} \frac{G M m}{r}=-\frac{1}{2} P E \tag{12}\\
\Rightarrow T E & =K E+P E=P E / 2=-|P E| / 2<0 \tag{13}
\end{align*}
$$

Ь $T E<0$: negative? yes!
Q: what does it mean to have negative energy?
for orbiting system $T E<0$:
\rightarrow have to supply energy to system to break it apart

Why? when particles are at rest and "very" far apart

$$
\begin{aligned}
& K E=m v^{2} / 2=0 \\
& P E=G M m / r \rightarrow 0 \quad Q: \text { how far apart is this? } \\
& \text { and so } T E=K E+P E=0 \text { : zero total energy }
\end{aligned}
$$

But if start in closed orbits (circular or elliptical): $T E<0$
\rightarrow To "break" the system from closed orbits, must add energy
But energy is conserved \rightarrow not spontaneously added so system is bound
\Rightarrow can't fall apart without external influence

Note: $K E=-P E / 2=|P E| / 2$ generally true for
\exists gravitating systems in equilibrium:
"virial theorem"
ellipse: semimajor axis a, eccentricity $0<e<1$
turns out: TE depends only on a, not e
from cons of energy
$T E=-G M m / r+\frac{1}{2} m v^{2}=-G M m / 2 a<0 \rightarrow$ bound
can show

$$
\begin{equation*}
v^{2}=G M\left(\frac{2}{r}-\frac{1}{a}\right) \tag{14}
\end{equation*}
$$

"vis viva" equation ("life force")
discovered prior to concept of energy
handy: gives total speed v at any radius r
Q : at which r is $v=0$? how does this work for a circular orbit?
Q : for a given orbit (fixed e), when is v max?

Unbound Orbits

Note that both parabolic and hyperbolic orbits are not periodic - do not close on themselves "one-way ticket" past the central object

Parabola

$e=1$

$$
\begin{equation*}
r=\frac{2 p}{1+\cos \theta} \tag{15}
\end{equation*}
$$

p is distance of closest approach
for parabolic orbit:
$T E=0$ exactly! $\rightarrow K E=-P E$ exactly! very special case!
$\Rightarrow G M / r=\frac{1}{2} v^{2}$
So at $r=\infty, v=0$
to have this orbit, launch from r with speed
$v_{\text {launch }}=\sqrt{2 G M / r}$

iClicker Poll: Orbits

given: test particle m, at distance r from gravitating body M for test particle to have total energy $T E=0$ launch from r with speed $v_{0}=\sqrt{2 G M / r}$

Q: what happens if launch with speed $v>v_{0}$?
A particle will be in a bound orbit: circle or ellipse
B particle will be unbound, with speed $v \rightarrow 0$ as $r \rightarrow \infty$
C particle will be unbound, with speed $v>0$ as $r \rightarrow \infty$

Q: why is v_{0} a special speed?

Escape Speed

At radius r, define escape speed $v_{\text {esc }}=\sqrt{2 G M / r}$

- if launch from r with $v_{\text {launch }}<v_{\text {esc }}$ then $T E<0$: fall back! (elliptical orbit)
- if launch from r with $v_{\text {launch }}>v_{\text {esc }}$ then $T E>0$: escape "easily" : $v>0$ at $r=\infty$
- if launch from r with $v_{\text {launch }}=v_{\text {esc }}$ exactly then $T E=0$ exactly, "just barely" escape

So: escape speed is minimum speed needed to leave a gravitating source

Example: escape speed from earth $v_{\text {esc }}=11 \mathrm{~km} / \mathrm{s}=25,000 \mathrm{mph}$!
predict the future: if toss object with $v<25,000 \mathrm{mph}$, falls back but if $v>25,000 \mathrm{mph} Q$: example? never returns!
finally, the more "generic" unbound orbit:
hyperbola

$$
\begin{equation*}
r(\theta)=\frac{\left(e^{2}-1\right) a}{1+e \cos \theta} \tag{16}
\end{equation*}
$$

$e>1, T E>0$
$v>0$ at $r=\infty$: nonzero speed far from M

Recall: at large r, hyperbola \rightarrow straight line
But Newton says: $d \vec{v} / d t=-G M / r^{2} \hat{r}$
so as $r \rightarrow \infty$, then $d \vec{v} / d t \rightarrow 0$
\Rightarrow gravity negligible, $\vec{v} \rightarrow$ const: free body=straight line!
orbit of unbound "flyby":
$\stackrel{\rightharpoonup}{ }$ distant nearly free body \rightarrow passing: pulled toward M
\rightarrow distant deflected nearly free body

