- 1. DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO.
- 2. Write you name and all answers in your test booklet. Turn in everything: your booklet, and the questions.
- 3. Show all of your work in the test booklet, and indicate clearly your final answer! A correct final answer may not receive credit if no work is shown.
- 4. Budget your time! Don't get stalled on any one question.
- 5. For your reference there are formulas below. Many of these constants and formulas you will not need for this exam!

Possibly Useful Formulae

Astronomical Unit: $1 \text{ AU} = 1.5 \times 10^{11} \text{ m}.$ gravitational constant : $G = 6.7 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$ speed of light: $c = 3.0 \times 10^8 \text{ m s}^{-1}$ Stefan-Boltzmann constant: $\sigma = 5.7 \times 10^{-8} \; \mathrm{W} \, \mathrm{m}^{-2} \, \mathrm{K}^{-4}$ Planck's constant: $h = 6.6 \times 10^{-34} \text{ J s} = 4.1 \times 10^{-15} \text{ eV s}$ electron Volt: 1 eV = 1.6×10^{-19} J Boltzmann constant: $k = 1.4 \times 10^{-23} \text{ J K}^{-1}$ mass of the proton: $m_p = 1.7 \times 10^{-27} \text{ kg}$ $M_{\odot} = 2.0 \times 10^{30} \text{ kg}$ $M_{\text{Earth}} = 6.0 \times 10^{24} \text{ kg}$ $M_{\text{Jupiter}} = 1.9 \times 10^{27} \text{ kg}$ $R_{\text{Earth}} = 6.4 \times 10^6 \text{ m}$ $R_{\text{Jupiter}} = 7.0 \times 10^7 \text{ m}$ $R_{\odot} = 7.0 \times 10^8 \text{ m}$ $L_{\odot} = 3.8 \times 10^{26} \,\mathrm{Watt}$ $T_{\odot} = 5800 \text{ K}$ age of Sun $\simeq 4.6 \times 10^9$ yr $\vec{L} = m\vec{r} \times \vec{p}$ $v_{\text{circ}} = 2\pi r/P = \omega r$ $\vec{F} = Gm_1m_2/r^2 \hat{r}$ $a_{\text{AU}}^3 = P_{\text{yr}}^2$ $\lambda f = c$ $\vec{L} = m\vec{r} \times \vec{p}$ $a_{\text{c}} = v^2/r$ $PE = -Gm_1m_2/r$ $v_{\text{circ}}^2 = GM/r$ $a^3 = GMP^2/4\pi^2$ $F_{\text{c}} = -h^{-F_{\text{c}}}$ $E_{\gamma} = hf = hc/\lambda$ $\theta_{\rm diff} = 1.22\lambda/D$ $\lambda_{\rm max}T = 2.9 \times 10^{-3} {\rm m K}$ $F = \frac{dE/dt}{A} \qquad F = \sigma T^4 \qquad L = 4\pi R^2 F$ $T = [(1 - A)/(2 \text{ or } 4)]^{1/4} (R_{\odot}/d)^{1/2} T_{\odot} = (332 \text{ or } 279 \text{ K})[(1 - A)/d^2]^{1/4}$ $v_{\rm rms}^2 = 3kT/\mu$ $v_{\rm esc} \ge 6v_{\rm rms}$ to retain gas $v_{\rm esc}^2 = 2GM/R$ $F_{\rm tide} = 2GMmR/d^3$ $R_{\text{Roche}} = 2.4 (M/m)^{1/3} r_m = 2.4 (\rho_M/\rho_m)^{1/3} R_M$ $n = n_0 e^{-\lambda t}$ $t_{1/2} = \ln 2/\lambda$

NOTE: the above symbols may have different meanings in different equations!