
Astronomy 210
Homework Set #10: Simulation Option

Due in class: Friday, April 22
Total Points: 50 + 10 bonus

Choosing a Computational Project

This week’s homework uses computer-based analysis to get important astrophysics results.
There are two options, this one involving basic programming to simulate a star, the other
involving collection and analysis to derive properties of galaxies in the local and distant
universe.

You should choose one of these projects to do.

This Option: A White Dwarf in Your Computer

Use a computer to solve the equations of stellar structure for a white dwarf!
While the writeup for this project may seem long, mostly that’s because I’ve already

done the necessary derivations for you. You only need to answer the questions labeled
with a), b) and so forth. You will also have to write a small computer code, but if you
want you can follow the outline in Part III very closely, which should make it very easy.

Part I: The Lane-Emden Equation

We’ll be interested in “cold” stars, for which we only have to solve for hydrostatic equi-
librium. In class, we saw how the idea of hydrostatic equilibrium applied to the bulk
of the whole star can be used to relate the average pressure in a star to it’s mass and
radius. In fact, hydrostatic equilibrium also applies to each point in the star, and relates
the pressure (in fact, the pressure gradient) at each point to the gravity and density at
that point. This is done via the equation of hydrostatic equilibrium

dP

dr
= −ρ

Gm

r2
, (1)

which is derived on p. 311 of your text, which also derives the mass equation

dm

dr
= 4πr2ρ (2)

These equations, together with an equation of state relating P to ρ, are enough to specify
the structure of the star.

It turns out that for white dwarfs, the equation of state takes the particularly simple form

P = Kρ1+1/n. (3)

This is called a polytropic equation of state. K is a constant, and n is the polytropic
index.1 K and n are different for different kind of objects and different physical regimes,

1In class, we wrote this equation of state in another common form, P = Kργ . In this case, K is the
same as in eq. (3), while γ = 1 + 1/n, or n = 1/(γ − 1).



but in part V we’ll focus on high density white dwarfs, for which K and n are known.

In order to bring these equations into a more convenient form, we can solve equation (1)
for m, take a derivative, and insert into (2), which yields

1

r2
d

dr

(

r2

ρ

dP

dr

)

= −4πGρ. (4)

We now substitute (3) into (4), and find

1

r2
d

dr

(

Kr2

ρ

dρ1+1/n

dr

)

= −4πGρ, (5)

which can be rewritten

1

r2
d

dr

(

Kr2(n+ 1)
dρ1/n

dr

)

= −4πGρ. (6)

At this point it turns out to be very convenient to make the substitutions

ρ = ρcθ
n (7)

and
r = aξ, (8)

where ρc is the density at the center, and a is

a =

(

(n+ 1)Kρ
(1/n)−1
c

4πG

)1/2

. (9)

θ and ξ are now dimensionless – all the physical dimensions have been absorbed in ρc and
a. Equation (6) now takes the easy form

1

ξ2
d

dξ

(

ξ2
dθ

dξ

)

= −θn. (10)

This is the famous Lane-Emden equation. This is a second order, ordinary differential
equation for the “density profile” θ, as a function of the “radius” ξ. (It is “second order”,
because it involves up to second derivatives of θ). We also have to determine boundary
conditions at ξ = 0 (i.e. r = 0). Obviously, at the center the density has to be the central
density, and hence

θ = 1 at ξ = 0. (11)

Also, the derivative of the density has to vanish at the center, and therefore

dθ

dξ
= 0 at ξ = 0. (12)

These are the two boundary conditions that are necessary for a second order equation.

Our goal is to find a function θ(ξ) that satisfies the Lane-Emden equation (10). In general,
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this has to be done numerically, as in part III. Once we have found this function, the radius
of the star is determined by the point at which θ goes to zero. We will call this point ξ1:

θ(ξ1) = 0. (13)

Once we know ξ1, the radius of the star is obviously

R = aξ1 =

(

(n+ 1)Kρ
(1/n)−1
c

4πG

)1/2

ξ1. (14)

We can also find the mass

M = m(R) = 4π

∫ R

0
ρr2dr = 4πa3ρc

∫ ξ1

0
ξ2θndξ (15)

= −4πa3ρc

∫ ξ1

0

d

dξ

(

ξ2
dθ

dξ

)

dξ = 4πa3ρcξ
2
1 |θ

′(ξ1)|, (16)

where we have inserted (10) for θn, and where θ′ is short for dθ/dξ. Inserting (9) for a,
we finally find

M = 4π

(

(n + 1)K

4πG

)3/2

ρ(3−n)/(2n)
c ξ21 |θ

′(ξ1)|. (17)

Question 1 Show that for n = 3, the mass is independent of the central density.

Part II: An Analytical Solution

For n = 1, an analytical solution to the Lane-Emden equation (10) can be found:

θ =
sin(ξ)

ξ
. (18)

Question 2 Show that (18) satisfies the Lane-Emden equation (10). (Insert the analytical
solution into the left hand side, and show that you get the right hand side!)

Question 3 What is ξ1 for n = 1?

The solution (18) also satisfies the boundary conditions. We will use this solution as a
check for our computer program.

Part III: Numerical Implementation

We now want to integrate the Lane-Emden equation (10) on a computer! Instead of
integrating it in the second order form, however, it is easier to make two first order
equations out of it. One way to do that is to introduce a new variable

φ = ξ2
dθ

dξ
. (19)
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Inverting this equation we find a first order equation for θ

dθ

dξ
=

φ

ξ2
, (20)

and inserting (19) into (10) now yields a first order equation for φ:

dφ

dξ
= −ξ2θn. (21)

The last two equations can now be integrated very easily with a computer. If you have
used numerical libraries before you can do that and use as fancy a routine as you want. If
not, you can do something very simple, as for example the following. First, let’s replace
the d’s by ∆’s:

∆θ =
φ

ξ2
∆ξ (22)

∆φ = −ξ2θn∆ξ. (23)

Now start at ξ = 0, with θ = 1 and φ = 0. Choose a fairly small ∆ξ – for example,
∆ξ = 10−3 may do the job. ∆ξ controls the accuracy of your calculation, and you should
play with it to see its effect. Integrate from ξ to ξ +∆ξ by adding ∆θ to θ and ∆φ to φ.
Repeat this procedure until θ becomes negative – and you’re done!

Note that there is one tricky part, and that is that at ξ = 0 you cannot divide by ξ in
order to find ∆θ. However, φ is zero at ξ = 0 also, and it turns out that both right hand
sides vanish at ξ = 0. I therefore coded up a little if statement, which sets the right hand
sides to zero if ξ = 0, and evaluates them according to equations (22) and (23) otherwise.

Your whole code may be very short and may look like something like this:

double n = 1.0;

double dxi = 0.001;

double theta = 1.0;

double phi = 0.0;

double xi = 0.0;

do {

if (xi == 0.0) {

phi = phi + 0.0;

theta = theta + 0.0;

} else {

theta = theta + dxi * (phi / (xi*xi));

phi = phi - dxi * (xi*xi * pow(theta,n) );

}

xi = xi + dxi;

} while (theta > 0.0);
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This is a c++ code, but you can use any programming language that you like. You’ll have
to add a few lines for output! This is probably the most primitive code you’d come up
with – anything more fancy is welcome, too!

Question 4 Write a numerical code to solve the Lane-Emden equation. Print out the
code and attach it to your report.

Part IV: Code Check

Question 5 Run your code for n = 1. What do you find for ξ1? Compare with your
result from II.b)! What happens if you increase/decrease ∆ξ? Explain.

Question 6 Make a plot of the density in units of the central density (i.e., plot θn) versus
ξ. In one graph, plot both your numerical result for θ and the analytical solution (18).
(Note: for n = 1, we obviously have θn = θ, but the difference between θ and ρ will be
important below!) Also make a separate plot the “residual” of your calculation–i.e., plot
the difference δθ = θcode−θanalytical versus ξ, and/or plot the percent error 100δθ/θanalytical
versus ξ. If your code were infinitely accurate, it would give δθ = 0. Thus, the size of δθ
and of the percent error gives you a measure of the accuracy of your code. How good is
your result? How does the size of the residual depend on your choice of stepsize ∆ξ?

Part V: White Dwarfs

For white dwarfs with high densities, the equation of state is well approximated by a
polytropic equation of state with polytropic index n = 3. The constantK in the polytropic
equation of state then is

K =
31/3π2/3

24/34

h̄c

m
4/3
p

, (24)

where mp is the proton mass.

Question 7 Use your code to integrate the Lane-Emden equation for n = 3. What is ξ1?
What is |θ′(ξ1)|?

Question 8 Plot the density in units of the central density (i.e. θn) as a function of ξ.
Compare with your plot for n = 1. What do people mean when they say that n = 3
polytropes are “centrally condensed”?

Question 9 What is the mass of a high density white dwarf? If you have done everything
right, you will have rediscovered the Chandrasekhar Mass!

A Final Note: For low density white dwarfs the polytropic index is n = 3/2, which
is the value quoted in the textbook. For intermediate values, the polytropic index takes
an intermediate value also. Such white dwarfs have masses a little less than the Chan-
drasekhar Mass. (For example, Sirius B, which we talked about in class, has a mass of
about 1.05M⊙.)
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Bonus [10 points]

Come up with your own original mnemonic for the stellar spectral types OBAFGKM,
to replace the standard “O Be A Fine Girl/Guy Kiss Me.” Submissions should be no
worse than PG-13 rated to receive credit. For style points, extend this to include the new
spectral types L and T (i.e., create something that can also work for OBAFGKML or
even OBAFGKMLT). Prizeworthy entries will be shown in class.

To receive credit, submit your entry on Compass by the start of class on Friday April
22.
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