Astronomy 150: Killer Skies Lecture 14, February 20

Assignments:

- HW4 posted, due Friday at start of class
- Night Observing begins this week
- Planetarium: report due Feb 24
- Exam being graded, scores posted when available sorry for long lines--will try to improve this next time
- Last time: the Sun--stability

Today: How does the Sun Shine?

Night Observing

- Night Observing begins tonight!
- Next two weeks: Mon-Thurs, 7-9pm
- **3 observing stations:**
 - Large telescope in observatory dome
 - >2 outdoor telescopes
 - Night sky constellation tour

Subscribe to Night Observing Status Blog

http://illinois.edu/blog/view/413 Get weather cancellation updates

Assignment details on class website

Report form required!

<u>download</u> and print out before you go Complete report due on or before Mar. 16

The Sun's Energy Output: Solar Power = "Luminosity"

Power = energy flow rate = energy out per second = "Wattage" Sun: 3.85 x 10²⁶ Watts, but how much is that?

- A 100W light bulb...
- ...the Sun could supply 4 x 10²⁴ light bulbs!

U.S. electricity production in 2009: 4.1 trillion kWh...

... Sun = 3×10^7 times this every second

World's nuclear weapons: 3 x 10⁴ megatons... ... Sun = 4 million times this every second

Wait...What Exactly is Energy?

Analogy due to Feynman

- a child--call him Bart--has 28 blocks
 - special blocks--indestructable

every day mother (Marge) finds 28 blocks on floor

until one day: 27 visible

but looks out window: one outside

have to be careful counting blocks

28 = # on floor + # out window + lumps in carpet

+extra toybox weight $+ \cdots$

Lessons:

blocks are conserved

but can take different apparent forms

Monday, February 20, 2012

Energy

Energy: abstract but useful concept

think of as: "ability to make change"

Why useful: energy is conserved

- in a closed system
- total energy = sum of all forms = constant a number that stays the same over time

Energy can take different forms

Examples:

- motion of single objects , if moving: kinetic energy $KE = \frac{1}{2}mv^2$
 - if spinning: rotational energy

random motion ("jiggling") of atoms:

sum of all atom kinetic energies = "thermal energy" of gas = "heat energy"

Energy often linked to forces

- gravity: gravitational energy
- Forces between atoms: chemical energy

Consequences of Energy Conservation The Doomed Stars

the Sun and all stars:

- are constantly releasing energy to the rest of the universe, and
- require fuel, and are unable to "refuel" out of nothing, and
- thus must eventually run of out fuel

Thus:

- All stars including the Sun must eventually "burn out"
- **run out of energy = run out of fuel**:
- the Sun all stars are doomed to die

the Sun cannot live forever!

But the Sun and other stars are alive today, so...?

- stars alive today were not alive forever
- > all stars must be born as well as die
- the Sun and stars have life cycles
- stellar mortality also implies possibility of rebirth!

Solar Energy

The Sun is not a cup of coffee!

- what's the difference?
- coffee cools if left on table
- Sun does not cool off

The Sun shines by generating its own heat (energy)

- Which eventually leaks into space as sunlight
- So: Sun's heat has to constantly be replentished

the Sun must have an energy source!

- What is it?
- Knowing this is crucial to understand future of Sun

How does the Sun Shine?

The Sun shines by its own power

hot <>> glows = emits light

but what keeps the Sun hot?

What energy source is transformed into thermal energy, light energy?

Discuss in groups

Find at least two plausible answers

even if know right one

Click A when done

How to Test?

"Flashlight test"

each energy source represents some amount of "fuel" = "battery charge"

see how long Sun can stay lit up for each fuel source

but know needed "lit time":

at least 4.6 billion years = age of solar system

Gravity:

- Seems like a good idea
- A contracting Sun does release gravitational energy
- But only enough for 20 million years

Chemical:

If the Sun was made from TNT, something that burns very well, then it would last for only 20,000 years

Rotational:

▶if Sun's spin slowed down, and somehow harness e the energy, would only last for about 100 years!

Need something more powerful!

The Nuclear Option

the only workable solar power source: •nuclear energy

The Sun is a vast nuclear reactor

in its hot core, hydrogen is converted to helium by nuclear reactions nuclear "burn time" about 10 billion years Q: why is this good news?

Note how we concluded this:

needed quantitative info (numbers: "burn times")
 to answer qualitative question "What powers the Sun"
 example of the power and necessity of number crunching

Fusion in the Sun

Fusion is a kind of nuclear reaction

Nuclear reactions

- one kind of nucleus transformed into another
- but nucleus defines element type:
- in nuclear reactions: atoms changed from one element to another!
- alchemy!

Fusion

- reactions where two nuclei combine to make a new, more massive nucleus
- "light" nuclei combine to make "heavy" nuclei

Fusion in Sun

- \blacktriangleright a series ("chain") of reactions changes $hydrogen \rightarrow helium$
- specifically: $4p \rightarrow {}^{4}\mathrm{He}$

where "helium-4" ${}^{4}\text{He} = 2p, 2n$

Fusion vs. Fission

Light nuclei: fusion ▶Fuse together light atoms to make heavier ones ▶Happens in the Sun ▶H-Bomb

Heavy nuclei: fission

- Break apart heavier atoms into lighter ones
- Used in power plantsA-Bomb

Why don't nuclei fly apart?

Atomic nuclei:

- very small
- contain protons: electric charge +1
- but two positive charges feel force:
 - electrical repulsion

another inverse square force: strongest when protons close

in nucleus: protons very close

electrical repulsion huge!

If this were the whole story, nuclei should explode! Atoms could not exist!

Q: Why don't nuclei explode?

Discuss, and Click A when you have an answer

Why don't nuclei fly apart?

Nuclei are stable:

- not flying apart
- not accelerating: a = 0
- so no net force: F = 0

But electrical repulsion exists and is huge!

must be an attractive force to balance

what about gravity?

- Good guess! $F_{\text{grav}}(pp) = G \frac{m_p^2}{d^2}$
- good news protons close -- makes gravity stronger
- bad news protons have tiny mass

Run the numbers:

compare gravity/electric forces between protons

- gravity feeble in nucleus
- need another force to hold nuclei together!
- new force better be very strong!

The Fantastic 4 Fundamental Forces

All known forces in the Universe trace back to one or more of just four:

Gravity

- > acts between all masses
- attractive
- inverse square law $F \propto \frac{1}{\text{distance}^2}$

Electromagnetic

- acts between charges
- > attractive between unlike charges, repulsive between like charges
- > also inverse square law

Strong Nuclear

- The strongest of the 4 forces
- Acts between protons and neutrons ultimately, between quarks does not act on electrons
- Attractive: this force holds an atom's nucleus together, overcoming electrical repulsion between the protons.
- Not an inverse square law- very short range.

Weak Nuclear

Nuclear Fusion in the Sun's Interior

Proton-Proton Chain

- 4 hydrogen atoms fuse to make 1 helium atom
- Nuclear energy released each time a new ⁴He is made
- Requires very high density and temperature (at least 7 million K!)

http://www.youtube.com/watch?v=Czbh_sdqX84

Chain: 4 protons helium First step in chain (2 protons combine):

$$p+p
ightarrow d + e^+ +
u$$

Start with 2 particles (protons)

End up with 4 particles (two of which are glued together)

each of products is very interesting in its own right....

$$p + p \neq d \neq e^+ + \nu$$

$$\mathbf{m} \ d = pn$$

deuterium d = pr

1 proton + 1 neutron bound together into nucleus of element...

Hydrogen, but has neutron, so 2 times mass of normal H

Heavy Hydrogen"

Simplest composite nucleus

Discovery of D in lab: Nobel Prize

about 0.01% of all H on earth is D

including in your body:

you contain about 10 kilos (20 lbs) of H, and about 2 grams of D

✓ Water (normally H_2O) with D is D_2O : "heavy water"

positron e^+

Exactly the same as electron but charge +1

Antimatter

Combines with normal e⁻

Both are gone, release of energy
Annihilation

Discovery of positron in lab: Nobel Prize Because of this reaction
≻The Sun contains a small amount of antimatter!

$$p + p \rightarrow d + e^+ + \nu$$

neutrino $\mathcal{V}_{(greek letter "nu")}$

- Particle produced in nuclear reactions only
- Tiny mass: m(v) < 10⁻⁶m(e) !
- Moves at nearly the speed of light
- very weakly interacting: ghostly!
- only created in nuclear reactions
 in fact: only feel Weak Nuclear Force
 created in reactions transforming protons to neutrons
 or vice versa

Discovery of neutrino in lab: Nobel Prize

10 billion from Sun go through your hand every sec

- Reach out!
- Go through your body, Earth, but almost never interact

Why does fusion release energy?

Fusion:
$$4p \rightarrow {}^{4}\text{He} = 2p, 2n$$

Fact: $m(4p) > m(^{4}He)$ mass of whole < sum of masses of parts!

Einstein says $E = mc^2$ Mass is a form of energy! Each ⁴He liberates energy:

$$E_{\text{fusion}} = m_{\text{lost}}c^2 = 4m(p)c^2 - m(^4\text{He})c^2 > 0$$
 !

Nuclear Fusion in the Sun's Interior

- Proton-proton in stars like the Sun
 - Hydrogen fused to make helium
 - 0.7% of mass converted to energy

