
Astronomy 501 Spring 2013
Problem Set #6

Due in class: Friday, March 8
Total points: 7+1

1. Superluminal Motion. Consider a blob of material ejected with speed v < c relative
to a supermassive black hole, and Lorentz factor γ = (1− v2/c2)−1/2. For simplicity,
assume the black hole is at rest with respect to us, and ignore any gravitational or
cosmological redshifting. As discussed in class, the motion of the blobs on the sky
leads to apparent speeds vapp > c: this is “superluminal motion.”

(a) [1 point] Let the blob move towards us at an angle θ with respect to the line
of sight. Consider two epochs in which the blob emits. Show that the apparent
speed is given by

vapp =
v sin θ

1− (v/c) cos θ
(1)

Hint: you may find it useful to find the distance ∆r⊥ the blob travels in the
plane of the sky, and the difference ∆tarr in the arrival times of the signals from
the two epochs.

(b) [1 point] Use the result from part (a) to show that vapp ≤ γv, with equality
when cos θ = v/c.

(c) [1 bonus point] Use the result from part (a) to show that vapp > c is only
possible if v > c/

√
2.

(d) [1 point] From the plot of the 3C279 jet, shown in the webpage from the Feb. 22
lecture, estimate vapp/c. Find the minimum Lorentz factor γ0 that consistent
with your result, and the associated jet angle θ0.

If the true Lorentz factor is γ > γ0, will the true jet angle be larger than or
smaller than θ0?

2. Synchrotron Radiation.1 As discussed in class, radio galaxy jets arise from electron
synchrotron radiation.

(a) [1 points] Consider a relativistic electron with Lorentz factor γ and relativistic
energy E = γmc2, with γ ≫ 1. The electron loses energy due to synchrotron
radiation in a uniform magnetic field B. Show that we may write the energy
loss as

Ė = −bE2 (2)

and find an expression for b.

Also find an expression that estimates the timescale for energy loss.

(b) [0.5 points] If an electron initially has energy E0 at time t = 0, solve eq. (2)
to find an expression for E(t). At what time is all of the energy lost? Compare
this to the timescale you found in part (a), and comment briefly.

1Portions swiped from a problem by Eugene Chiang.
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(c) [0.5 points] Cosmic-ray electrons are observed at Earth with energies up to 1
TeV. Using typical values for the interstellar magnetic field, calculate the energy
loss time for a 1 TeV electron. Express your answer in units of Gyr. Will cosmic-
ray electrons with lower energies take more or less time to lose their energies?

Comment on the implications of your result.

(d) [1 point] Let’s model the behavior of cosmic-ray electrons by finding the behav-
ior of their energy spectrum. Let N(E) dE give the number density of cosmic-ray
electrons with energies ∈ (E,E+dE). If we allow for cosmic-ray production (i.e.,
acceleration), and for energy loss due to synchrotron radiation, then the cosmic
rays are governed by

∂tN + ∂E
(

Ė N
)

= q (3)

where Ė = −bE2 as found above, and where q(E) dE is the number of cosmic ray
electrons produced (i.e., accelerated or “injected”) with energies ∈ (E,E + dE).
While this equation may look unfamiliar, it really is just a continuity equation
in energy space, with N playing the role of density and Ė playing the role of
“velocity.” Thus this equation is really just a statement of the conservation of
electrons.

Thus, when cosmic rays are accelerated, their spectrum “at birth” is N(E) ∝
q(E), but this evolves with time due to energy losses.

Consider the “steady state” situation in which ∂tN = 0. Show that the resulting
cosmic-ray spectrum can be written in terms of q(> E) =

∫

∞

E q(E′) dE′. Then
specialize to the astrophysically interesting case where cosmic rays are accel-
erated with a power-law spectrum q(E) = A E−α. Show that in this case, the
steady-state or “propagated” spectrum is also a power law, with index p = α+1,
i.e., one unit steeper than the acceleration spectrum.

Comment on why physically the propagated spectrum is steeper than the injec-
tion spectrum.

(e) [1 point] In radio galaxies, it is generally found that the spectral index s (i.e.,
Fν ∝ ν−s) of radio jet varies as a function of position along the jet. In particular,
the spectral index goes to roughly s ≃ 0.5 at the edge of the jets where “hot
spots” are found, and goes to s ≃ 1 at the galaxy where the jet originates.

How would you explain this trend based on your results from part (d)? Where
along the jet are the “newest” electrons? That is, where are most of the electrons
produced?


