
Astro 501: Radiative Processes

Lecture 10

Feb 6, 2013

Announcements:

• Problem Set 3 due next time

• BDF office hours shortened today

• TA office hours 1:30-3:00 tomorrow

Last time: began classical EM radiation

Q: energy density?

Q: Poynting vector?

Today: plane waves & polarization1



Maxwell and Fourier Modes

We have seen: wave equation demands ω = ck
But Maxwell equations impose further constraints

Consider arbitrary Fourier modes
~E = E0 ei(

~k·~r−ωt) â1, and ~B = B0 ei(
~k·~r−ωt) â2

Maxwell equations in vacuum impose conditions:

for example, Coulomb’s law ∇ · ~E = 0 implies

~k · ~E = 0 (1)

or equivalently n̂ · â1 = 0

similarly, no monopoles requires

~k · ~B = 0 n̂ · â2 = 0 (2)

Q: what does this mean physically for the waves?
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we found ~k · ~E = ~k · ~B = 0

→ propagation orthogonal to field vectors

⇒ EM waves are transverse

Faraday’s law requires ω ~B = c~k × ~E, or

~B =
c~k

ω
× ~E = n̂× ~E (3)

and Ampère’s law gives ~E = −n̂× ~B

Q: what do these conditions imply for the waves?
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Faraday’s law gives ~B = n̂× ~E , so

~E · ~B = ~E · (n̂× ~E) = 0 (4)

⇒ ~E and ~B are orthogonal to each other!

Faraday also implies

|B|2 = n̂2|E|2 − |n̂ · ~E|2 = |E|2 (5)

using vector identity (â×~b) · (~c× ~d) = â · ~c ~b · ~d− â · ~d ~b · ~c

we have: E0 = B0: field amplitudes are equal

which in turn means: â2 = n̂× â1, and â1 · â2 = 0

→ (n̂, â1, â2) form an orthogonal basis4



Monochromatic Plane Wave: Time Averaging

at a given point in space, field amplitudes vary

sinusoidally with time → energy density and flux also sinusoidal

but we are interested in timescales ≫ ω−1:

→ take time averages

Useful to use complex field amplitudes

then take real part to get physical component

handy theorem: for A(t) = Aeiωt and B(t) = Beiωt
i.e., same time dependence, then time-averaged products

〈ReA(t) ReB(t)〉 = 1

2
Re(AB∗) =

1

2
Re(A ∗ B) (6)
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Monochromatic Plane Wave: Energy, Flux

time-averaged Poynting flux amplitude

〈S〉 = c

8π
Re(E0B

∗
0) =

c

8π
|E0|2 =

c

8π
|B0|2 (7)

time-averaged energy density

〈u〉 = c

8π
|E0|2 =

c

8π
|B0|2 (8)

Q: given wave direction ~n, degrees of freedom in ~E, ~B?
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Polarization

EM waves propagating in a particular direction n̂

must be transverse ~k · ~E = n̂ · ~E = 0

→ nonzero ~E components lie in plane ⊥ to n̂

two independent components

for convenience: choose coordinates where n̂ = ẑ

so fields are in transverse plane x− y
physical electric vector is real part of

~E = (E1 x̂+ E2 ŷ) e−iωt (9)

complex amplitudes can be written

E1 = E1 eiφ1 E2 = E2 eiφ2 (10)

E

x

y

E2

E1

Q: but wait–what about the magnetic field?
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transverse electric field has two independent components

but once ~E determined, then ~B = n̂× ~E

at every point along sightline n̂, magnetic ⊥ electric

⇒ no additional degrees of freedom for ~B

monochromatic plane wave has two independent components

consider plane at fixed z = n̂ · ~r, say z = 0

the two physical components of the field evolve as

Ex = E1 cos(ωt− φ1) Ey = E2 cos(ωt− φ2) (11)

with E1, E2 can take any values, and φ1, φ2 independent

but only difference φ1 − φ2 can be important

→ a total of 3 independent parameters describe the fields

Q: ~E time evolution if E1 and E2 can differ, but φ1 − φ2 = 0?

Q: same but φ1 − φ2 = π?
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Linear Polarization

For φ1 − φ2 = 0, we have

Ex = E1 cos(ωt− φ1) Ey = E2 cos(ωt− φ1) =
E2
E1

Ex (12)

fields share same sign and same sinusoidal time dependence
~E sweeps out line with positive slope in x− y plane

→ linear polarization

For φ1 − φ2 = π, fields share time dependence

but have opposite sign

→ linear polarization with negative slope

Q: what is ~E time dependence if

E1 = E2 but φ1 − φ2 = π/2? −π/2

1
1φ −φ = 02

x

y

φ −φ = π
2
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Circular Polarization

if E1 = E2 but φ1 − φ2 = π/2

Ex = E1 cos(ωt− φ1) Ey = E1 sin(ωt− φ1)

~E sweeps counterclockwise circle

as seen approaching observer

⇒ circular polarization

Engineering: “lefthanded” circular polarization

→ but using righthand rule: positive helicity

E

y

x

if E1 = E2 but φ1 − φ2 = −π/2

→ “righthand” circular polarization, or negative helicity

in the most general case: E1 6= E2 and φ1 − φ2 arbitrary

Q: what is ~E time dependence?
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Elliptical Polarization

in the general case

Ex = E1 cos(ωt− φ1) Ey = E2 cos(ωt− φ2)

intuitively, blends linear and circular features:

→ elliptical polarization

E

y

x

x
y

χ

’
’

ellipse orientation fixed by E1 − E2 difference

ellipse eccentricity and helicity fixed by φ1 − φ2 difference

in coordinates (x′, y′) rotated to align with principal axes

E′
x = E0 cos β cos(ωt) E′

y = E0 sin β sin(ωt)

for some β ∈ [−π/2,+π/2]

Q: evolution if β > 0?
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E

y

x

x
y

χ

’
’

E′
x = E0 cosβ cos(ωt) E′

y = −E0 sin β sin(ωt)

principle axes: E0 cosβ and E0 sin β

if β ∈ [0, π/2]: ellipse sweeps clockwise

→ “righthanded” elliptical polarization, negative helicity

if β ∈ [0, π/2]: “lefthanded”, positive helicity

Q: what give linear polarization? circular?
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we want to relate x − y field parameters

E1, E2, φ1, φ2
with principle axes x′ − y′ parameters E0, β, χ
rotate x− y components by angle χ

Ex = E0 (cosβ cosχ cosωt− sin β sinχ sinωt)

Ey = E0 (cosβ sinχ cosωt− sin β cosχ sinωt)

E

y

x

x
y

χ

’
’

matching to, e.g., Ex = E1 cos(ωt− φ1):

E1 cosφ1 = E0 cosβ cosχ (13)

E1 sinφ1 = E0 sin β sinχ (14)

E2 cosφ2 = E0 cosβ sinχ (15)

E2 sinφ2 = −E0 sin β cosχ (16)

Q: how can we determine polarization by intensity measure-

ments?
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Introduce polarizer

can rotate polarizer:

→ measure Ix, Iy, and 45◦ rotated Ix′, Iy′

can use circular polarizers to measure

→ positive and negative circular polarization I+, I−

polarizer

dA

dΩ

detector

filter
bandwidth d ν

combine: Stokes parameters

I = Ix + Iy (17)

Q = Ix − Iy (18)

U = Ix′ − Iy′ (19)

V = I+ − I− (20)

Q: what physically is each? can more than one of Q,U, V be

nonzero? what does that correspond to?

Q: range of values for Q? U? V ? are they all independent?
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Stokes Parameters

for monochromatic waves, Stokes parameters related to

E1, E2, φ1, φ2 and E0, β, χ bases:

I = E2
1 + E2

2 = E2
0 (21)

Q = E2
1 − E2

2 = E2
0 cos 2β cos 2χ (22)

U = 2E1E2 cos(φ1 − φ2) = E2
0 cos 2β sin 2χ (23)

V = 2E1E2 sin(φ1 − φ2) = E2
0 sin 2β (24)

and thus

E0 =
√
I (25)

sin 2β = V/I (26)

tan2χ = U/Q (27)

since wave has 3 independent parameters,

Stokes parameters must be related

I2 = Q2 + U2 + V 2 (28)
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Quasi-Monochromatic Waves

natural light generally not a pure monochromatic wave

with a single, definite, complete state of polarization

rather: a superposition of components with many polarizations

consider wave with slowly varying amplitudes and phases

E1(t) = E1(t) eiφ1(t) ; E2(t) = E2(t) eiφ2(t) (29)

“slow”: wave looks completely polarized on timescalse ω−1

but amplitudes and phases drift over intervals ∆t ≫ ω−1

→ polarization changes

but also wave is no longer monochromatic

frequency spread: “bandwidth” ∆ω ∼ 1/∆t ≪ ω

→ quasi-monochromatic wave

Q: effect on Stokes?
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Stokes Parameters for Quasi-Monochromatic Light

real measurements represent averages over timescales

during which polarization can change

Stokes parameters become averages

I = 〈E1E
∗
1〉+ 〈E2E

∗
2〉 = 〈E2

1 + E2
2〉 (30)

Q = 〈E1E
∗
1〉 − 〈E2E

∗
2〉 = 〈E2

1 − E2
2〉 (31)

U = 〈E1E
∗
2〉+ 〈E2E

∗
1〉 = 2〈E1E2 cos(φ1 − φ2)〉 (32)

V = −i
(〈E1E

∗
2〉 − 〈E2E

∗
1〉

)

= 2〈E1E2 sin(φ1 − φ2)〉 (33)

but for quasi-monochromatic waves

I2 ≥ Q2 + U2 + V 2 (34)

• quasi-monochromatic polarization is still in general elliptical

• but drifts can reduce degree of polarization
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I2 ≥ Q2 + U2 + V 2 (35)

• maximum polarization when equality holds:

completely elliptically polarized

• minimum when Q = U = V = 0: unpolarized

• arbitrary wave is partially polarized

useful to define polarized intensity

Ipol = Q2 + U2 + V 2 (36)

and since Ipol ≤ I, define fractional degree of polarization

Π ≡ Ipol
I

=

√

Q2 + U2 + V 2

I
(37)
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note: can always decompose Stokes parameters










I
Q
U
V











=











I − Ipol
0
0
0











+











Ipol
Q
U
V











(38)

sum of unpolarized and polarized components
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Superposition and Stokes

consider composite wave that is superposition of many indepen-

dent waves

electric field components are given by superposition

E1 =
∑

k

E
(k)
1 ; E2 =

∑

k

E
(k)
1 (39)

each term k of which has different phase

PS3: phases specified, can calculate sum explicitly

but generally, phases are random

so field products average out phases from different waves

〈EiE
∗
j 〉 =

∑

k

∑

ℓ

〈E(k)
i E

(ℓ)∗
j 〉 =

∑

k

〈E(k)
i E

(k)∗
i 〉 (40)
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but due to this averaging, Stokes parameters are additive

I =
∑

k

I(k) (41)

Q =
∑

k

Q(k) (42)

U =
∑

k

U(k) (43)

V =
∑

k

V (k) (44)
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