
Astro 501: Radiative Processes

Lecture 11

Feb 8, 2013

Announcements:

• Problem Set 3 due at 5pm today in TA mailbox

• Problem Set 4 due next Friday

Last time: plane waves & polarization

Q: most general polarization state of monochromatic light?

Q: for natural light?

Q: why the difference?

Today: potentials, and radiation by accelerated charges1



The Vector Potential

No-molopoles condition ∇ · ~B

strongly restricts ~B configurations

condition automatically satisfied if we write

~B = ∇× ~A (1)

guarantees zero divergence because, for any ~A

∇ · (∇× ~A) = 0 (2)

where ~A is the vector potential

Q: units of ~A?
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write Faraday’s law in terms of ~A:

∇× ~E = −
1

c
∂t(∇× ~A) (3)

and so

∇×

(

~E +
1

c
∂t ~A

)

= 0 (4)

strongly restricts ~E configurations

Q: how to automatically satisfy?
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The Scalar Potential

Faraday with ~A

∇×

(

~E +
1

c
∂t ~A

)

= 0 (5)

vector field ~E + 1
c∂t

~A is curl-free

to automatically satisfy this, note that

∇× (∇φ) = 0 (6)

curl of grad vanishes for any scalar field (=function) φ

define scalar potential via

~E = −∇φ−
1

c
∂t ~A (7)

Q: units of φ?

Q: are ~A and φ unique? why?
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Gauge Freedom

vector potential defined to give ∇× ~A = ~B

clearly if ~A→ ~A′ = ~A+ constant, ~B → ~B

⇒ physical field unchanged

in fact: ~B unchanged for any transformation

~A→ ~A′ which preserves ∇× ~A′ = ~B:

∇× ( ~A′ − ~A) = 0 (8)

and thus there is no physical change if

~A′ = ~A+∇ψ (9)

because ∇× (∇ψ) = 0 for any ψ

→ gauge invariance

Q: what condition needed to keep ~E unchanged?

5



Gauge Invariance

the physical electric field has

~E = −∇φ−
1

c
∂t ~A (10)

and must remain the same when ~A → ~A+∇ψ

but we have

~E → ~E′ = −∇φ−
1

c
∂t ~A

′ (11)

= −∇

(

φ+
1

c
∂tψ

)

−
1

c
∂t ~A (12)

Q: and so?
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~E → ~E′ = −∇

(

φ+
1

c
∂tψ

)

−
1

c
∂t ~A (13)

and so to keep ~E′ = ~E requires

φ→ φ′ = φ−
1

c
∂tψ (14)

the ~E, ~B preserving mappings

(φ, ~A) → (φ, ~A) + (∂tψ/c,∇ψ) (15)

is a gauge transformation

a deep but also annoying property of electromagnetism

for our purposes, a useful but not unique choice

∇ · ~A+
1

c
∂tφ = 0 (16)

“Lorentz gauge”
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Maxwell Revisited

express Maxwell in terms of potentials: Coulomb

−∇ ·

(

∇φ−
1

c
∂t ~A

)

= −∇2φ−
1

c
∂t(∇ · ~A) (17)

= 4πρq (18)

and so in Lorentz gauge

∇2φ−
1

c2
∂2t φ = −4πρq (19)

scalar potential satisfies a wave equation!

φ source is charge density ρq
changes in φ propagate at speed c

for static situation ∂tφ = 0, Poisson ∇2φ = −4πρq, and

φ(~r) =
∫

d3~r′
ρq(~r′)

|~r′ − ~r|
(20)

Q: solution for full wave equation?
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Scalar Potential and Retarded Time

general solution to

∇2φ−
1

c2
∂2t φ = −4πρq (21)

turns out to be

φ(~r, t) =

∫

d3~r′
ρq(~r′, t′)

|~r′ − ~r|
=

∫

d3~r′
[

ρq

|~r′ − ~r|

]

ret

(22)

where source density ρq(~r′, t′)

is evaluated at retarded time

t′ ≡ [tret] = t−
|~r − ~r′|

c
(23)

→ φ “learns” about changes in charge density at ~r′

only after signal propagation time ctprop = |~r′|

9



Maxwell and the Vector Potential

in terms of potentials, Ampère in Cartesian coords:

∇× (∇× ~A) = ∇2 ~A−∇(∇ · ~A) (24)

=
4π

c
~j +

1

c

(

∇φ+ ∂t ~A
)

(25)

so in Lorentz gauge

∇2 ~A−
1

c2
∂2t
~A = −

4π

c
~j (26)

vector potential also satisfies a wave equation

source is current density ~j

Q: solution?
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each component Ai of vector potential satisfies

∇2Ai −
1

c2
∂2t Ai = −

4π

c
ji (27)

formally identical to scalar potential equation

if we put φ → Ai and ρq → ji/c

and thus we can import the solution:

Ai(~r, t) =

∫

d3~r′
[

ji
|~r′ − ~r|

]

ret

(28)

→ vector potential responds to current changes

after “retarded time” delay

Integral solutions for φ and ~A are huge!

Q: why? what’s the Big Deal?
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Recipe for Electromagnetic Fields

our mission: find ~E(~r, t) and ~B(~r, t)

given charge ρq(~r, t) and current ~j(~r, t) distributions

solution: first find potentials via

φ(~r, t) =

∫

d3~r′
[

ρq

|~r′ − ~r|

]

ret

(29)

~A(~r, t) =

∫

d3~r′
[

~j|~r′ − ~r|
]

ret
(30)

from these, find fields via

~E = −∇φ−
1

c
∂t ~A (31)

~B = ∇× ~A (32)

ta da!
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in the 3-D spatial integrals

φ(~r, t) = −
∫

d3~r′
[

ρq

|~r′ − ~r|

]

ret

(33)

it is convenient (and pretty!) to recast as

integrals over 4-D spacetime:

φ(~r, t) = −
∫

d3~r′ dt′
ρq(~r′, t′)

|~r′ − ~r|
δ(t′ − t+ |~r − ~r′|/c) (34)

were the δ function enforces the retarded time condition

Q: What if charges are all pointlike?
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Potentials from Point Charges

if N point charges, where ith charge qi has trajectory with

position ~ri(t), and velocity ~vi(t), then

ρq(~r, t) =
∑

i

qi δ
(3) (~r − ~ri) (35)

~j(~r, t) =
∑

i

qi vi(t) δ
(3) (~r − ~ri) (36)

with Dirac δ-functions δ(3)(~r − ~ri) = δ(x− xi) δ(y − yi) δ(z − zi)

scalar potential due to one charge with q0, ~r0(t), ~v0(t) is

φ(~r, t) = q0

∫

d3~r′ dt′
δ(3)(~r′ − ~r0(t))

|~r′ − ~r|
δ(t′ − t+ |~r − ~r′|/c) (37)

space part of integral is easy

φ(~r, t) = q0

∫

dt′
δ
(

t′ − t+ |~r − ~r0(t
′)|/c

)

|~r − ~r0(t′)|
(38)
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writing ~R(t′) ≡ ~r − ~r0(t
′)

and R(t′) = |~R(t′)|, we have

φ(~r, t) = q0

∫

dt′
δ
(

t′ − t+R(t′)/c
)

R(t)
(39)

and now the final δ function is nontrivial

math aside: fun properties of the δ function

δ(x) designed to give
∫

f(y) δ(y − x) dy = f(x) (40)

but if δ argument is a function of the integration variable
∫

f(y) δ (g(x)) dy =
∑

rootsj

f(g(xj))

|dg/dx|xj
(41)

where root xj is the jth solution to y − g(x) = 0

here: define t′′ = t′ − t+R(t′)/c
then dt′′ = dt′ + Ṙ(t′)/c dt′
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Liénard-Wiechert Potentials

for point source with arbitrary trajectory, we have

φ(~r, t) =
1

1− n̂ · β̂0(tret)

q0
R

(42)

where n̂ = ~r/r and ~β0(t) = ~v0(t)/c

similarly, vector potential solution is

~A(~r, t) =
1

1− r̂ · β̂0(tret)

q0~v0(~r, tret)

R(tret)
(43)

these are the Liénard-Wiechert potentials

Q: equipotential surfaces φ = const for

stationary charge ~r0(t) = const?

Q: for charge with ~v0 large?

Q: implications?
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potential factor κ ≡ [1− n̂ · β̂]ret is

• directional,

• velocity dependent, such that

• potential ∝ 1/κ enhanced along direction of charge motion

and potential suppressed opposite direction of charge motion

⇒ expect forward “beaming” effects!

But we want the EM fields, not just potentials,

so we need to evaluate

~E = −∇φ−
1

c
∂t ~A (44)

~B = ∇× ~A (45)

using the beautiful Liénard-Wiechert point-source potentials

where, φ = φ[~r, t;~r0(t), ~v0(t)] and ~A = ~A[~r, t;~r0(t), ~v0(t)]

Q: what terms will appear in ~E?
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Electrodynamics of Moving Charges

after tedious algebra, we find:

~E(~r, t) = q

[

(n̂− β̂)(1− β2)

κ2R2

]

ret

+
q

c

[

n̂

κ3R
×

{

(n̂− β̂) × ~̇β

}]

ret

(46)

form is rich = complicated, but also complete and exact!

depends on charge position, velocity, and acceleration

magnetic field is

~B(~r, t) =
[

n̂× ~E(~r, t)
]

ret
(47)

Q: why did this have to be true?

Q: ~E result for charge at rest? with constant velocity?

Q: result at large R?
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Electric “Velocity” Field

the first term = “velocity field”

~E(~r, t)vel = q

[

(n̂− ~β)(1− β2)

κ2R2

]

ret

(48)

• depends only on position and velocity

evaluated at a past location of the particle

• velocity field not isotropic if particle moving

displacement from retarded position ~r0(tret)

to the field position ~r is n̂c(t− tret)

to the current particle position βc(t− tret)

so ~E points to current position!

→ legal? yes! velocity constant, trajectory news always “avail-

able”
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