Astro 501: Radiative Processes
Lecture 11
Feb 8, 2013

Announcements:

e Problem Set 3 due at 5pm today in TA mailbox
e Problem Set 4 due next Friday

Last time: plane waves & polarization

Q. most general polarization state of monochromatic light?
Q: for natural light?

Q. why the difference?

. loday: potentials, and radiation by accelerated charges



The Vector Potential

No-molopoles condition V - B
strongly restricts B configurations

condition automatically satisfied if we write
B=VxA (1)
guarantees zero divergence because, for any A
V- (VxA)=0 (2)

where A is the vector potential
Q. units of A7



write Faraday’s law in terms of A:

— 1 —
VxE=—0(VxA)
C
and so
— 1 —
V x (E—I——atA) —0
C
strongly restricts E configurations
Q. how to automatically satisfy?

(3)

(4)



The Scalar Potential
Faraday with A
v x (E + %aﬂ) —0 (5)
vector field £ + 19,4 is curl-free

to automatically satisfy this, note that

Vx(Vg)=0 (6)
curl of grad vanishes for any scalar field (=function) ¢

define scalar potential via

— 1 —
E=-V¢——-0,A (7)
C
Q. units of ¢7

Q: are A and ¢ unique? why?



Gauge Freedom

vector potential defined to give Vx A = B
clearly if A — A’ = A+ constant, B — B
= physical field unchanged

in fact: B unchanged for any transformation
A — A which preserves V x A’ = B:

Vx(A—-A)=0 (8)
and thus there is no physical change if
A= A+ Vi (9)

because V x (Vi) = 0 for any ¢
— gauge invariance

Q. what condition needed to keep E unchanged?



Gauge Invariance

the physical electric field has
— 1 —
E=-V¢——-0A (10)
C

and must remain the same when A — A + V)

but we have

- = 1 -
E - E = —vgb—;atA’ (11)

v (64 -ow) — oA (12)

Q. and so7’



FE—-FE = -V <¢ -+ —aﬂb) — 20 A
C C
and so to keep E' = E requires

1
<W+W=¢—;@¢

the E,é preserving mappings
(6, A) = (¢, A) + (B /c, V)

IS a gauge transformation

a deep but also annoying property of electromagnetism
for our purposes, a useful but not unique choice

L1
V-A4+-0,6=0
C

“Lorentz gauge”

(13)

(14)

(15)

(16)



Maxwell Revisited

express Maxwell in terms of potentials: Coulomb

1 - 1 —
_v. (w _ —&gA) — V2% S9,(V- A) (17)
C C
= 4mpq (18)
and so in Lorentz gauge
1
V26— 5076 = —4mpg (19)

scalar potential satisfies a wave equation!
@ source is charge density pq
changes in ¢ propagate at speed c

for static situation 0;¢ = 0, Poisson Vng = —4mpq, and

Pq("ﬂ)
|7 — 7

() = / 437

Q). solution for full wave equation?

(20)



O

Scalar Potential and Retarded Time

general solution to
1
V¢ — 6—26752(/5 = —4mpq

turns out to be

- L 3 Pq(fyatl) L 3y Pq
qb(r,t)—/dr - —/dr =1

17— 7 17— 7

where source density pq(7,t)
IS evaluated at retarded time

t' = [tret]l =t —

C
— ¢ ‘learns” about changes in charge density at
only after signal propagation time ctprop = ||

(21)

(22)

(23)



=
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Maxwell and the Vector Potential

in terms of potentials, Ampeéere in Cartesian coords:

Vx(VxA = V2A-— V(V-/Y) (24)
4 L
= —J+° (v¢+atA) (25)
so in Lorentz gauge
5001 5 47,
V24 — C—QaEA — —%j (26)

vector potential also satisfies a wave equation
source is current density j

Q). solution?



each component A; of vector potential satisfies

1

V2A; — =07 A; = ——Ji (27)

formally identical to scalar potential equation
if we put ¢ — A; and pg — j;/c

and thus we can import the solution:

A ) = [ a3 I*’ji 1] (28)
= Tllret

— vector potential responds to current changes
after “retarded time” delay

Integral solutions for ¢ and A are huge!
~ Q: why? what's the Big Deal?



Cl

Recipe for Electromagnetic Fields

our mission: find E(7,t) and B(7,t)
given charge pq(7,t) and current 7(7,t) distributions

solution: first find potentials via

/d377' _qu _’]
_|7" —7“| ret

A7) = /d3f" 77— 7]

¢(7,t)

ret
from these, find fields via

— 1 —

FE = —V¢——-0A
C

V X A

ol
|

ta da!

(29)

(30)

(31)
(32)



€l

in the 3-D spatial integrals

b(7 1) = —/d3f’ [ Pq q]
ret

7 =7

it is convenient (and pretty!) to recast as
integrals over 4-D spacetime:

.
O(7 1) = —/d3f’ ap PATLE) gy 7 — 7| /c)

were the § function enforces the retarded time condition

Q: What if charges are all pointlike?

(33)

(34)



A"

Potentials from Point Charges

if N point charges, where ith charge g; has trajectory with
position 7;(t), and velocity v;(t), then

pg(Ft) = 3 q; 63 (7= 7) (35)
iFt = S g vit) 63 F—7) (36)
with Dirac é-functions 6 (7 — 7)) = §(z — x;) §(y — ;) (2 — 2;)

scalar potential due to one charge with qqg, 79(t), vg(t) is

Bz _ =
&(7,t) = qo / B ar (|; . ;10(75))

space part of integral is easy

B(F.1) = qo0 [ dt il

St —t+|Fr—7/c) (37)

t' —t+ |7 —7o(t)]/c)
|7 — o (t')]

(38)



GT

writing R(t) = 7 — 7p(t)
and R(t') = |R(t")|, we have

and now the final § function is nontrivial

(39)

math aside: fun properties of the § function
6(x) designed to give

[1@) 6y~ ) dy = (=) (40)

but if § argument is a function of the integration variable

/f(y) §(g(z)) dy= > flg(zj))

roots; |dg/da:|g;j
where root z; is the jth solution to y — g(z) =0

(41)

here: define t” =t —t+ R(t")/c
then dt’ = dt' + R(t")/c dt’



o1

Liénard-Wiechert Potentials

for point source with arbitrary trajectory, we have

. 1 q0
)=
P 1) 1 —n-Bo(tret) R

where n = 7/r and Bo(t) = vp(t)/c

similarly, vector potential solution is

R 1 vo (7, t
A7 t) = _ C]O’UO("’H ret)
1 —7-Boltret) R(tret)
these are the Liénard-Wiechert potentials

Q. equipotential surfaces ¢ = const for
stationary charge 7o(t) = const?

Q). for charge with vy larger

Q. implications?

(42)

(43)



A

potential factor x = [1 — 7 - Byet IS

e directional,

e velocity dependent, such that

e potential x 1/x enhanced along direction of charge motion
and potential suppressed opposite direction of charge motion

= expect forward “beaming’ effects!

But we want the EM fields, not just potentials,
SO we need to evaluate

— —

1
E = —Vé— —9A (44)
C

B = VxA (45)

using the beautiful Liénard-Wiechert point-source potentials
where, ¢ = ¢[F,t; 7o(t), To(t)] and A = A[F,t; 7o (t), o(t)]

Q. what terms will appear in E?



81

Electrodynamics of Moving Charges
after tedious algebra, we find:

E(F,t)=q[(ﬁ_3>(1_52)]ret+q[?Rx {(ﬁ—B) xﬁ}

k2 R2

C LK ret
(46)
form is rich = complicated, but also complete and exact!
depends on charge position, velocity, and acceleration
magnetic field is
B(#t) = [ x E(7, 1) (47)

Q. why did this have to be true?

Q: E result for charge at rest? with constant velocity?
Q: result at large R7?



o1

Electric “Velocity” Field

the first term = “velocity field”

0153(162)]
ret

E(7,t)ye] =
(’I" >vel q [ K,QRQ

e depends only on position and velocity

evaluated at a past location of the particle
e velocity field not isotropic if particle moving

displacement from retarded position 7g(tret)
to the field position 7 is ne(t — tyet)

to the current particle position Se(t — tyet)
so E points to current position!

(48)

— legal? yes! velocity constant, trajectory news always “avail-

able”



