
Astro 501: Radiative Processes

Lecture 15

Feb 18, 2013

Announcements:

• Problem Set 5 due 5pm Friday

Last time: bremsstrahlung

Q: what is it?

Q: what interactions, trajectories are relevant?

Q: what does bremsstrahlung emission jν depend on?
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Bremsstrahlung = “breaking radiation”

= radiation from decelerated charge particles

electron and ion scattered by same Coulomb force (Newton III)

But ai/ae = me/mi < 10−3 → ion acceleration negligible

→ focus electron acceleration in static field of ion

Our order-of-magnitude estimate for the emission coefficient

from non-relativistic bremsstrahlung:

jν ∼ e6Z2

mec3v
neni (1)

Q: what’s the basic physical picture?

Q: notable features? what didn’t we get from order of mag?

Q: how can we do the classical calculation more carefully?
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Bremsstrahlung: Physical Picture

we are interested in the motion of an electron

through a plasma

we approximate this as a series of

• two-body electron-ion scattering events

• unbound Coulomb trajectories: hyperbolæ

→ asymptotically free, scattered through small angle

• acceleration maximum at closest approach b

lasting for scattering time τ = b/v

• burst of radiation over this time, frequency ν ∼ 1/τ

So net effect is

• many scattering events

• a series of small-angle scatterings

• and radiation bursts at different frequencies
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Bremsstrahlung: Classical Calculation

Consider electron with initial speed v

with impact parameter b

moving fast enough so that

scattered through small angle

b

Z

v

R

dipole moment ~d = −e~R, with second derivative

~̈d = −e~̇v (2)

take Fourier transform

−ω2 ~̈d = − e

2π

∫ ∞

−∞
~̇veiωt dt (3)

where: ~v(t) is an unbound Coulomb trajectory:

→ hyperbola in space, complicated function of time

but: ~̇v(ω) simplifies in limiting cases

→ compare ω and collision time τ = b/v

Q: ωτ ≫ 1? ωτ ≪ 1?
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− ω2 ~̈d = − e

2π

∫ ∞

−∞
~̇veiωt dt (4)

but ~v(t) only changes on timescale τ :

for ωτ ≫ 1, many oscillations during acceleration

complex phase averages out: ~v(ω) → 0

for ωτ ≪, complex exponent unchanged during accel

phase unimportant: ~v(ω) → ∫

~̇v dt = ∆~v

and thus the dipole moment has

~d(ω) →
{

e
2πω2∆~v ωτ ≪ 1

0 ωτ ≫ 1
(5)
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Energy emitted per unit frequency

dW

dω
→






2e2

3πc3
|∆~v|2 ωτ ≪ 1

0 ωτ ≫ 1
(6)

Now find ∆~v: for small deflection

∆v ≈ ∆v⊥ =

∫

Fz dt (7)

=
Ze2

me

∫

b

(b2 + v2t2)3/2
dt (8)

=
2Ze2

mebv
(9)

b

Z

v

R
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energy emitted per electron

dW (b)

dω
=







8Z2e2

3πc3M2
e vb

2 ωτ ≪ 1

0 ωτ ≫ 1
(10)

power emitted power per volume

dW (b)

dV dω dt
= ne

dW

dω

dNi

dt
= 2πneni

∫ bmax

bmin

dW (b)

dω
b db (11)

approximate with low-frequency result:

qν = 4πjν =
dW

dV dω dt
=

16Z2e2

3πc3m2
ev

neni ln

(

bmax

bmin

)

(12)

compare/contrast with order-of-magnitude:

• linear scaling with e and ion density

• 1/v scaling

• independence of b range → log dependence

• independence with ν, ω: “flat” emission spectrum
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Impact Parameter Range

bremsstrahlung emission at speed v, frequency ω

depends logarithmically on the limits

bmin, bmax of impact parameter

within our classical, small-angle-scattering treatment

lower limit

• quantum mechanics: ∆x ∆p >∼ h̄

→ b
(1)
min > h/mv

• small-angle: ∆v/v ∼ Ze2/bmv2 < 1

→ b
(2)
min > Ze2/mv2

upper limit

for a fixed ω and v, max impact parameter is bmax ∼ v/ω

fortunately: log dependence on limits

→ results not very sensitive to details of choices
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Single-Velocity Bremsstrahlung

convenient, conventional form for bremsstrahlung emission

also known as free-free emission

4π jω(ω, v) =
16π

3
√
3

Z2e6

m2
e c

3v
nine gff(ω, v) (13)

uses the dimensionless correction factor or Gaunt factor

gff(ω, v) =

√
3

π
ln

(

bmax

bmin

)

(14)

• accounts for log factor

• typically gff ∼ 1 to few

• tables and plots available9



Thermal Bremsstrahlung

so far: calculated bremsstrahlung emission for

a single electron velocity v

→ a “beam” of mono-energetic electrons

but in real astrophysical applications

there is a distribution of electron velocities

usually: a thermal distribution

so we wish to find

the mean or expected emission
〈

jν,brem
〉

for a thermal distribution of velocities

Q: order-of-magnitude expectation?
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Thermal Bremsstrahlung: Order-of-Magnitude

order-of-magnitude emission for single v:

jν ∼ e6Z2

mec3v
neni (15)

i.e., jν ∼ 1/v

thus, thermal average

〈jν〉 ∼
e6Z2

mec3vT
neni (16)

with vT a typical thermal velocity

find vT from equipartition: mev2T ∼ kT → vT ∼
√

kT/me

Q: how do we approach the honest, detailed calculation?

Q: yet more new formalism?
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Thermal Particles: Non-Relativistic Limit

recall: semiclassically, particle behavior in phase space (~x, ~p)

described by distribution function f :

• Heisenberg: minimum phase-space “cell” size dx dp = h

• particle number dN = g/h3 f(~x, ~p) d3~x d3~p

a dilute=non-degenerate, non-relativistic particle species

of mass m at temperature T

has distribution function

ftherm(p) ∝ e−p2/2mT (17)

and thus has number density n ∝ ∫

e−p2/2meTd3~p ∝ ∫

e−mev2/2kTd3~v

Q: how to compute thermal averaged bremsstrahlung emission?
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Bremsstrahlung emissivity depends on electron properties via

jν(ν, T) = 〈jν(ν, v)〉 ∝
〈

gff(ν, v) ne

v

〉

(18)

where
〈

gff(ω, v) ne

v

〉

∼
∫ ∞

vmin

gff(ω, v)

v
e−mev2/2kT d3~v (19)

Note lower limit vmin at fixed ν

→ minimum electron velocity needed to radiate photon

of energy ν

Q: what value should this have? effect on final result?
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energy conservation: to make photon of frequency ν
electron needs kinetic energy mev2/2 > hν, so

vmin =

√

2hν

me
(20)

thus exponential factor has

e−
mev2

2kT = e−
mev2min
2kT e−

me(v2−v2
min

)

2kT = e−
hν
kT e−

me(v2−v2
min

)

2kT

→ overall factor e−hν/kT in thermal average

→ photon production thermally suppressed at hν > kT

thermal bremsstrahlung = “free-free” emission result:

4πjν,ff(T) =
25π Z2 e6

3 mec3

(

2π

3mekT

)1/2
ḡff(ν, T) e−hν/kT ne ni

(21)

with ḡff(ν, T) the velocity-averaged thermal Gaunt factor

Q: spectral shape for optically thin plasma? implications?

Q: integrated emission?
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4πjν,ff(T) =
25π Z2 e6

3 mec3

(

2π

3mekT

)1/2
ḡff(ν, T) e−hν/kT ne ni (22)

main frequency dependence is jν ∝ e−hν/kT

→ flat spectrum, cut off at ν ∼ kT/h

→ can use to determine temperature of hot plasma (PS5)

integrated bremsstrahlung emission:

4πjff(T) = 4π
∫

jν,ff(T) dν (23)

=
25π Z2 e6

3 mec3

(

2πkT

3me

)1/2

ḡB(T) e−hν/kT ne ni (24)

= 1.4× 10−27 erg s−1 cm−3 ḡB

(

T

K

)

1
2
(

ne

1 cm−3

) (

ni

1 cm−3

)

with ḡB(T) ∼ 1.2± 0.2 a frequency-averaged Gaunt factor

Q: all of this was for emission–what about the thermal bremsstrahlung

absorption coefficient?
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Thermal Bremsstrahlung Absorption

for thermal system, Kirchoff’s law: Sν = Bν(T) = jν/αν

thus we have

αν,ff =
jν,ff

Bν(T)
=

4 Z2 e6

3 mehc

(

2π

3mekT

)1/2
ḡff(ν, T) ν−3

(

1− e−hν/kT
)

ne ni

limits:

• hν ≫ kT : αν,ff ∝ ν−3

• hν ≪ kT : αν,ff ∝ ν−2

Q: sketch optical depth vs ν? implications?
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Bremsstrahlung Self-Absorption

bremsstrahlung optical depth at small ν:

τν ∝ αν,ff ∝ ν−3 (25)

guaranteed optically thick below some ν

→ free-free emission is absorbed inside plasma:

bremsstrahlung self-absorption

thus observed plasma spectra should have three regimes

• small ν: τν ≫ 1, optically thick, Iν → Bν ∝ ν3

• hν < kT : optically thin, Iν → jνs flat vs ν

• hν ≫ kT : thermally suppressed, Iν → jνs ∼ e−hν/kT

Q: expected X-ray count spectrum for supernova remnant?

www: observations
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