
Astro 501: Radiative Processes

Lecture 17

Feb 22, 2013

Announcements:

• Problem Set 5 due 5pm today

• good news: no problem set next Friday!

• bad news: Midterm in class next Friday

info online

Last Time: Special Relativity and Radiation

Q: when is special relativity astrophysically important?

Q: angular radiation pattern from a relativistic emitter?

Today: other key Special Relativity results

mostly results: derivation, formalism in R&L, Jackson, etc.
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Relativistic Beaming

for light emitted in K ′ at θ′ = π/2

observed angle after boosting is

tan θ =
1

γv/c
(1)

and thus

sin θ =
1

γ
(2)

if emitted K ′ is highly relativistic,

then γ ≫ 1, and

θ →
1

γ

i.e., a small forward angle!

K’
K

γ

a highly relativistic emitter gives a beamed radiation pattern

strongly concentrated ahead of emitter direction
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Relativistic Doppler Effect

emitter moves with speed v wrt observer

in emitter frame K ′:

light has (rest) frequency ω′

first wave crest emitted at t′ = 0

second wave crest emitted at t′ = 2πω′

in observer frame K:

observe light at angle θ

second wave crest after emitter travels

distance x = vt

d

x
θ

difference in observed light arrival times is

δt = t− d/c = (1− v cos θ/c)t (3)
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difference in observed light arrival times is

δt = t− d/c = (1− v cos θ/c)t (4)

and since t = t′/γ, we have

ω′ =

(

1−
v

c
cos θ

)

ω

γ
(5)

so: light emitted at rest frequency ω′ = ωemit

is observed at angle θ to have frequency

ω =

(

1−
v

c
cos θ

)

ω′

γ
(6)

and thus

ωobs = γ

(

1−
v

c
cos θ

)

ωemit (7)

relativistic Doppler formula
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Four Vectors

recall: in 3-D space, isotropy → rotational invariance

i.e., experiments give same result if rotate entire apparatus

through some angle

laws of physics must display rotational invariance

→ most conveniently done by (3-D) vector notation, e.g.,

vector statement ~F = m~a automatically rotationally invariant

→ in a rotated from ~F ′ = m~a′: same law

take a similar approach to 4-D Lorentz transformation

define coordinate 4-vector

X = (x0, x1, x2, x3) = (ct, x, y, z) = (ct, ~r) (8)
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Four Vectors

• Lorentz transformation to frame with ~v = vx̂

X =











x′0
x′1
x′2
x′3











=











γ(x0 − βx1)
γ(x1 − βx0)

x2
x3











=











γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1





















x0
x1
x2
x3











• dot product

X · Y = −x0y0 + x1y1 + x2y2 + x3y3 = −x0y0 + ~x · ~y (9)

=
(

x0 x1 x2 x3
)











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





















y0
y1
y2
y3











(10)

gorgeous feature: dot product result same in any Lorentz frame

i.e., X · Y = X ′ · Y ′

⇒ dot product is Lorentz invariant! everyone agrees!
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invariance of dot product very useful

you pick convenient frame, evaluate dot product

→ result good in any frame

thus everyone agrees on 4-vector “norm” like X2 ≡ X ·X

Q: what is this quantity? what is the physical significance?

Q: what does it mean physically when X ·X = 0? > 0? < 0?

note: different conventions for dot product sign

i.e., sign of Minkowski metric

sometimes X · Y = x0y0 − ~x · ~y
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Relativistic Velocity

Recall: for events separated by (dt, dx, dy, dz)

invariant interval/c = proper time

dτ2 =
ds2

c2
= dt2 − d~r2/c2 = dt2 (1− u2/c2) (11)

dτ =
dt

γ
(12)

where ~u = d~r/dt, and γu = (1− v2/c2)−1/2

→ dτ =elapsed time in rest frame of the event pair

Take proper time derivative of position 4-vector

→ defines 4-velocity: for µ ∈ 0,1,2,3

Uµ =
dxµ

dτ
(13)

Q: µ = 0 component? other components?
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Uµ =
dxµ

dτ
(14)

zero (i.e., time) component

U0 =
c dt

dτ
= cγu

dt

dt
= cγu (15)

space components i ∈ 1,2,3

U i =
dxi

dτ
= γu

dxi

dt
= γu ui (16)

and thus U = (γc, γ~u)

• Lorentz transformation properties: same as space 4-vectors

• norm:

U2 = −c2
dt2

dτ
2 +

d~r2

dτ
2 = −c2

dτ2

dτ2
= −c2 (17)
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Energy and Momentum

for a particle of (rest) mass m, define 4-momentum

Pµ = mUµ =
dxµ

dτ
(18)

• zero component: relativistic energy

P0 = mU0 = mcγu =
E

c
(19)

in ~u = 0 rest frame, E = mc2 rest energy

• space components: relativistic momentum

P i = mU i = γu m ui (20)

Q: norm? what if massless?

1
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• norm: c2P2 = m2c2U2 = −E2 + (cp)2 = −m2c4

→ E =
√

(c~p)2 + (mc2)2

• relativistic limit: for u/c → 1

P → (γmc, γmc): E ≈ p

• Energy and momentum conservation all in one

if no forces act Pinit = Pfinal

• massless particles?

recall: ds2 = c2dτ2 = cdt2 − d~r2 = 0

→ can’t take proper time derivative

→ but still can define 4-momentum P = (E/c, ~p)

with P2 = 0 → E = cp1
1



Electromagnetic Fields in Relativity

Electric and magnetic fields are vectors in 3-D space

how to characterize in 4-D?

Turns out: natural to define field tensor

Fµν =











0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0











Lorentz transformation of fields?
if boost with velocity ~v = c~β

E′
‖ = E‖ (21)

B′
‖ = B‖ (22)

E′
⊥ = γ(E⊥ + ~β × ~B) (23)

B′
⊥ = γ(B⊥ − ~β × ~E) (24)

1
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Field Transformation: Intuitive Picture

consider a charged capacitor

plates have surface charge density σ

from Gauss’ law, electric field has
∫

~E · d~S = ES = 4πQenc = 4πσS (25)

and so E = 4πσ

+     
+     
+     
+     
+     
+     
+     
+     
+     −      

−      
−      
−      
−      
−      
−      
−      
−      

Q: what if we boost along ~E?

Q: what if we boost perpendicular to ~E?

1
3



boosting along ~E: length contraction

→ plates appear closer

but surface charge density unchanged

→ electric field

E′ = E′
‖ = 4πσ = E unchanged

+     
+     
+     
+     
+     
+     
+     
+     
+     −      

−      
−      
−      
−      
−      
−      
−      
−      

boosting orthogonal to ~E:

length contraction → plates “squished”

charge conserved

Q′
enc = Qenc = 4πS′σ′

but contracted surface has area S′ = S/γ,

so surface charge density increases: σ′ = γσ

→ electric field E′ = E′
⊥ = 4πσ′ = γE enhanced

−      
−      
−      
−      
−      
−      
−      
−      
−      

+     
+     
+     
+     
+     
+     
+     
+     
+     1
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Electromagnetic Forces

define 4-acceleration aµ = d2xµ/dτ2 = dUµ/dτ

Relativistic version of force law:

maµ =
dPµ

dτ
= qUνF

ν
µ (26)

zero component: energy conservation

dE

dt
= q~v · ~E (27)

space components: Lorentz force

d~p

dt
= q ~E + q~v × ~B (28)1
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Emission from a Relativistic Accelerated Charge

Consider a charge q accelerating relative to an observer

useful to go to charge’s instantaneous rest frame K ′

→ in K ′, emission is given by nonrelativistic Larmor!

in time dt′, emitted energy is dW ′

but net momentum of emitted radiation is d~p′ = 0

since Larmor (dipole) emission is front-back symmetric

in observer frame (velocity −v):

energy dW = γdW ′ emitted in time dt = γdt′, so:

P =
dW

dt
=

dW ′

dt′
= P ′ (29)

total power emitted is Lorentz invariant!

1
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Larmor: P ′ = 2q2/3c3 |~a′|2

want to re-express using 4-acceleration

can show: in instantaneous rest frame, a0′ = 0

and thus |~a′|2 = a · a

Lorentz-invariant Larmor expression for total radiated power

P =
2

3

q2

c3
a · a (30)

manifestly invariant, can evaluate in any frame

1
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P =
2

3

q2

c3
a · a (31)

in instantaneous rest frame, 4-acceleration transforms as

a′‖ = γ3a‖ (32)

a′⊥ = γ2a⊥ (33)

(34)

and so power emitted is

P =
2

3

q2

c3
~a′ · ~a′ =

2

3

q2

c3
(a′2⊥ + a′2‖ ) (35)

=
2

3

q2

c3
γ4 (a2⊥ + γ2a2‖) (36)
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