
Astro 501: Radiative Processes

Lecture 3

Jan 18, 2013

Announcements:

• Problem Set 1 posted, due at start of class next Friday

• you may speak to me, the TA, and other students

but you must understand your own answers

and write them yourself and in your own words

• thanks to master googling by a 501 student

single pdf file for Rybicki & Lightman now on Compass

Last time:

• leftover fun: www: Apollo 11 solar wind experiment

• a blizzard of definitions!

Q: what is intensity? how does it differ from flux?

Q: what is specific intensity? average intensity?
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On Frequency and Wavelength

For most of the course, we will describe specific intensity
using Iν ≡ dI/dν, i.e., in “frequency space”

But we could as well use Iλ ≡ dI/dλ: “wavelength space”

Of course, the two are related: in (ν, ν + dν)
the intensity Iν dν is equal to Iλ dλ
where (λ, λ+ dλ) is the corresponding wavelength interval:
i.e., ν = c/λ, and dν = −c dλ/λ2

Thus the two intensity descriptions differ by a change of variable

and thus by a Jacobian factor:

Iλ =

∣

∣

∣

∣

dν

dλ

∣

∣

∣

∣

Iν =
c

λ2
Iν=c/λ (1)

• the same Jacobian factor is needed for Fλ, uλ, etc.
• note that λIλ = νIν: both give the intensity

per unit log interval |dλ/λ| = |dν/ν|; good to show on plots!
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Numbers

when using the photon picture of light

the basic units are counts = number of photons

where for monochromatic photons, dE = Eν dN = hν dN

→ useful to introduce the specific number intensity

Iν =
dNγ

dt dA dΩ dν
=

1

hν

dE

dt dA dΩ dν
=

Iν

hν
(2)

and specific number flux

Fν =

∫

Iν cos θ dΩ =
1

hν

∫

Iν cos θ dΩ (3)
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Momentum Flux

consider the flux of photon momentum

in direction normal to area dA

For photons in solid angle dΩ, from direction angle θ

contribution to number flux is dFν = Iν/hν cos θ dΩ

photon momentum pν = hν/c has normal component

pν,⊥ = hν/c cos θ

photon momentum flux ⊥ surface is radiation pressure

Pν =
∫

pν,⊥ dFν =
1

c

∫

Iν cos2 θ dΩ (4)

for isotropic radiation

P iso
ν = 2π

I isoν

c

∫ 1

−1
µ2dµ =

4π

3

I isoν

c
(5)
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Energy Density

consider a bundle of rays passing through

a small volume dV

energy density uν(Ω) for bundle

defined by dE = uν(Ω) dΩ dV

but dV = dAdh, and flux thru height dh

in time dt = dh/c, so

dV = c dAdt

dΩ

dA

dh = c dt
volume

dV = c dA dt

thus we have

dE = c uν(Ω) dA dt dΩ (6)

but by definition dE = Iν dA dt dΩ, so

uν(Ω) =
Iν

c
(7)

5



specific energy density in bundle in solid angle dΩ

uν(Ω) =
Iν

c
(8)

so total energy density is

uν =
∫

uν dΩ (9)

=
1

c

∫

Iν dΩ (10)

=
4πJν

c
(11)

we can similarly find the photon specific number density

nν =
uν

hν
=

4πJν

hcν
(12)
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Radiation Equation of State

recall: for isotropic radiation, pressure is

momentum flux

P iso
ν =

4π

3

I isoν

c
=

uisoν

3
(13)

pressure is 1/3 energy density, at each frequency!

note: relationship between pressure and (energy) density is

an equation of state

thus people (=cosmologists) generalize this: P = wu

with w the “equation of state parameter”

we find: for isotropic radiation, wrad = 1/37



Integrated Intensity, Flux, Energy Density

specific intensity is per unit frequency: Iν = dI/dν
total or integrated intensity sums over all frequencies:

I =

∫

Iν dν (14)

similarly, can define integrated flux

F =

∫

Fν dν (15)

and integrate number and energy densities

n =

∫

nν dν (16)

u =

∫

uν dν (17)

similarly, if we measure using a broadband filter

that has a finite passband e.g., the classic UBV GRIZ...,
or ugrizY Q: who uses these? www: transmission curves

can define Iband =
∫

band Iν dν etc.

8



Constancy of Specific Intensity in Free Space

in free space: no emission, absorption, scattering,

consider rays normal to areas dA1 and dA2

separated by a distance r

energy flow is conserved, so

dE1 = Iν1 dA1 dt dΩ1 dν1 = dE2 = Iν2 dA2 dt dΩ2 dν2

• as seen by dA1, the solid angle dΩ1

subtended by dA2 is dΩ1 = dA2/r
2,

and similarly dΩ2 = dA1/r
2

dA

dA

r

1

2

• and in free space dν1 = dν2, so:

Iν1 = Iν2 (18)9



Iν1 = Iν2 (19)

thus: in free space, the intensity is constant along a ray

that is: intensity of an object in free space

is the same anywhere along the ray

so along a ray in free space: Iν = constant

or along small increment ds of the ray’s path

dIν

ds

free
= 0 (20)

this means: when viewing an object across free space,

the intensity of the object is constant

regardless of distance to the object!

⇒ conservation of surface brightness

this is huge! and very useful!

Q: what is implied? how can this be true–what about inverse

square law? everyday examples?

1
0



Conservation of Surface Brightness

consider object in free space at distance r

with luminosity L and project area A ⊥ to sightline

flux from source follows usual inverse square

F =
L

4πr2
(21)

but intensity is flux per solid angle

and since Ω = A/r2, we have

I =
F

Ω
=

L/4πr2

A/r2
=

L

4πA
(22)

independent of distance!

r

A

L

and note I = L/4πA: intensity really is surface brightness

i.e., brightness per unit surface area and solid angle
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Consequences of Surface Brightness Conservation

resolved objects in free space

have same I at all distances

• Sun’s brightness at surface is same as you see in sky

but at surface subtends 2π steradian – yikes!

• similar planetary nebulae or galaxies all have similar I

regardless of distance

• people and objects across the room don’t look 1/r2 dimmer

than things next to you

fun exercise: when in your everyday life

do you actually experience the inverse square law for flux?
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Adding Sources

matter can act as source and as sink for propagating light

the light energy added by glowing source in small volume dV ,

into a solid angle dΩ, during time interval dt,

and in frequency band (ν, ν + dν), is written

dEemit = jν dV dt dΩ dν (23)

defines the emission coefficient

jν =
dEemit

dV dt dΩ dν
(24)

• power emitted per unit volume, frequency, and solid angle

• cgs units: [jν] = [erg cm−3 s−1 sr−1 Hz−1]

• similarly can define jλ, and integrated j =
∫

jνdν
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for isotropic emitters,

or for distribution of randomly oriented emitters, write

jν =
qν

4π
(25)

where qν is radiated power per unit volume and frequency

sometimes also define emissivity ǫν = qν/ρ

energy emitted per unit freq and mass, with ρ =mass density

beam of area dA going distance ds

has volume dV = dA ds
dA

ds

so the energy change is dE = jν ds dA dt dΩ dν

and the intensity change is

dIν
sources

= jν ds (26)
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Adding Sinks

as light passes through matter, energy can also be lost

due to scattering and/or absorption

we model this as follows:

dIν = −αν Iν ds (27)

features/assumptions:

• losses proportional to distance ds travelled

Q: why is this reasonable?

• losses proportional to intensity

Q: why is this reasonable?

• defines energy loss per unit pathlength, i.e.,

absorption coefficient αν
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Absorption Cross Section

consider “absorbers” with a number density na

each of which presents the beam with an

effective cross-sectional area σν

over length ds, number of absorbers is

dNa = na dAds

ds

dA side view

a “dartboard problem”– over beam area dA

total “bullseye” area: σνdNa = naσν dAds
face view

dA

σ

so absorption probability is

dPabs =
total bullseye area

total beam area
= na σν ds (28)

and thus beam energy change is

dE = −dPabsE = −naσνIν ds dA dt dΩ dν (29)
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beam energy change:

dE = −dPabsE = −na σνIν ds dA dt dΩ dν (30)

which must lead to an intensity change

dIν
abs
= −na σν Iν ds (31)

which has the expected form, with

αν = na σν (32)

note that absorption depends on

• microphysics via the cross section σν
• astrophysics via density nabs of scatterers

often, write αν = ρκν,

defines opacity κν = (n/ρ)σν ≡ σν/m

with m = ρ/n the mean mass per absorber

Q: so what determines σν? e.g., for electrons?
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