Astro 501: Radiative Processes
Lecture 30
April 5, 2013

Announcements:

e Problem Set 9 due 5pm next Monday
e ICES to be available online — please!

LLast time: thermodynamics of atomic states
Q. ratio of 2p to 1s states in hydrogen at 1T'?
Q. what is hydrogen ionization fraction xe?

Q. in thermodynamic equilibrium, what parameters determine
xe?



ratio of 2p to 1s in hydrogen:
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define ionization fraction
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with total electron number density niot = ne + nH
using ne = np (charge neutrality): Saha equation

ZUg - 2(27rmekT/h2)3/26_BH/kT _ nQ,ee—BH/kT (3)

1 — e Ntot "tot
ionization depends on T but also particle density niot




Radiative Transitions




Radiative Transitions

so far: thermal populations of bound states
now: transitions between states
leading to emission/absorption

we want a qualitative and quantitative understanding
qualitatively:
e Wwhat is the basic physics?

e selection rules: which transition are allowed?

quantitatively:
~ Q: what do we want to know?



quantitatively:

we want to describe the strength of transitions

in particular, the usual radiation transfer quantities
e emission coefficient j,

e absorption coefficient oy

these are closely related to Einstein coefficients

o Aif spontaneous emission rate per atom for ¢ — f
e B,r stimulated emission coefficient

° sz- true absorption coefficient

recall: we found that, for hz/if = F, — Ef

hl/i AZ
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with ¢(v) the line profile function



T he Semiclassical Approach

Deriving the general Einstein A and B coefficient
for transitions between two atomic states

from first principles

IS a big job

we will take a ‘“first-ish” principles approach
sketch what goes into the final result

we will work in the semiclassical limit
e treat the atomic states quantum mechanically
e but treat the radiation classically
— i.e., in the limit of large photon occupation f
> good for getting Einstein B, bad for A Q: why?
Q. but what’s the workaround if we know B?7



classical radiation < large photon occupation f

absorption and stimulated emission: rate proportional to J, =
[ I, dS2

and recall I, = 2v2/c? f
— SO rate « [ f dS€2 works even down to small f

spontaneous emission: involves single photons
correct analysis demands quantum treatment of radiation field

but luckily Einstein says: A;; = (2hv;}/c*) By,
so if we find B, then use this to get A

~ thus: we will calculate absorption



So we will:
e treat atoms quantum mechanically, and

e treat radiation as a perturbation, in the form of
an external classical EM field

Q. how do we describe formally the unperturbed system?

Q. how do we introduce the perturbation?



The Electromagnetic Hamiltonian

recall quantum mechanics: stationary atomic states |n)
are governed by the time-independent Schrodinger equation

Hg |n) = En |n) (7)
in terms of wavefunctions ¥, (z) = (z|n) ,
Ho Yn = En Yn (8)

with Hgy the Hamiltonian operator for the atom
and includes the e-nucleus EM interactions
and E, is the energy of state n

add an external classical field with 4-potential (¢, A)
the relativistic Hamiltonian for an electron is

B 2
H = \/<cp - eA) + (mec?)? — ed (9)
for experts: gives right equation of motion in Hamilton’s eqs
Q. limit of no field? non-relativistic limit?




T he Relativistic Hamiltonian

full relativistic Hamiltonian for an electron

N2
H = \/(cﬁ—l— eA) + (mec?)? — ed (10)
non-relativistic limit: cp < mec?
o2
1 L, . €A
o= o (1) - (11)
2Me C
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e - _ eA
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plus a constant term mec? which we ignore Q: why?

note: we have used the “Coulomb gauge” for the perturbation
° V- A=0=¢



T

we can write the non-relativistic Hamiltonian as

H = Ho+ Hy + Hop (13)

where the unperturbed atomic Hamiltonian is Hy,
the perturbation first order in A is

Hy = A5 (14)

and the perturbation second order in A is

e2 A2
H-r = 15
2= 55 (15)

there is a beautiful physical interpretation of the terms:
e /11 describes one-photon emission processes
e 1, describes two-photon emission processes

Q). relative importance of the two terms?



Cl

order-of-magnitude estimate of the ratio of terms, in H atom:

H1 epA/mec ev/c

' Hy €2A2/mec? a2apA (16)
external electric field E ~ 1/c partial;A ~v/c A
and in H: v/c ~a, and hv ~ e2/ag SO hv/c ~ a/ag
hv
2
~ 17
Ui GSEQ (17)
but E?/hv ~ npp, the photon density in the external field
1 102° photons/cm?3
N ( (18)
"ph@Q "ph

at the Sun’s surface npp ~ 1012/cm3

lesson: n > 1 for (almost) all astro applications
— ignore the two-photon term Ho»
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The Transition Probability

we want the probability for transition ¢ — f
where the unperturbed wavefunctions satisfy Hq ¥ = E}. 1. this
probability is time-dependent

the perturbing field generates nonzero amplitude for states n #*=
SO write time-dependent wavefunction as

b(t) =S ap(t) oy, e /T (19)
k

Q: ai(t) for system without perturbation? behavior with pertur-
bationr



A"

for at time-dependent potential, standard quantum mechanics
gives
the probability sz- to go from state ¢+ — f

with ¢ the time the perturbation acts
and the transition probability per unit time

Wy = 472 |fi(wf7;)|2
h< t
where Hpi(w) = (2r) L [§ Hpi(t) et
with the matrix element Hp; = [} Hy 1 d3z
and where hwy, = Ef — E;

(21)

if we have multiple atomic electrons, them perturbation is sum

.
RISV, (22)
j
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let the perturbingjield have:
o A(F,t) = A(t) %7, with
e A(t) = 0 outside of (0,t)

then the Fourier transform of the matrix element is

- zeTL
Hpy = Api(wp) - — (f “““Zv i) (23)

where (f] ei’g"FZj Vi) = >5[y Vi b d3z is time-independent

write A = A e with unit polarization vector e:

472e

cht

(24)

‘A(wﬁ)

(fle*Te - S0V
J

=

“ note that wy; o< |[A(wy;)|?; related to intensity



o1

recall: integrated intensity is

T C C
1=(57)= | B2 dt = ;/|E(w)|2 dt

to monochromatic intensity

_ ¢ [BW)?
t

and since E = —1/c ;A = —iw/cA

Jw

2
w
Jo = —|A(w)|?
ct

and thus we see that wy; o< |A(w)|?
implies W X Jo, as expected for absorption!

also: what about W; f for f — 7

(25)

(26)

(27)
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finally, for the transition probability per unit time

for + — f we have

Wy — 2

- 4m2e2 J(wfz'>
mecC

2

about the probability for f;—> 17
the same except now (i[e?* e - 3, Vi)
but integrating by parts, can show

Wif = Wy

principle of detailed balance

(FleFTe 3"V

J
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(28)

(29)



