Astro 501: Radiative Processes
Lecture 31
April 8, 2013

Announcements:

e Problem Set 9 due 5pm today

e Problem Set 10 due 5pm Friday April 19
e ICES to be available online — please!

Last time: transitions involving bound states

Q. what approximations used?

found transition probability per unit time Wi for 1 — 9

Q. what does this depend on? what about Wi for 3 — 17
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the transition probability per unit time
for + — f we have
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with e the polarization unit vector, and
the sum is over atomic electrons

for f —1

Wif = Wy
principle of detailed balance

1

3

now: evaluate operator e*7e .Y, V;
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the heart of the transitiorl probability is
the matrix element fw?eik'Fe Y Vi

the wavenumber k = w/c = AFE/hc
and the atomic wavefunctions are significant on scales ~ ag
so: k-7~ kag ~ agAE/fc ~ Zv/c < 1

thus we write

eFT =14k -7— =(k-P)%+ - (3)
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and we approximate e*7" ~ 1

Q: when would we be interested in the higher order terms?
w



we see that ¢F™ =1 4+ ik -7+ - ..
iS an expansion in v/c
and we recall v/c < 1 for atoms with moderate Z <« 137

lesson: expansion is dominated by first nonzero term

e (kr)0 term: electric dipole approximation (more soon on this)
dominates unless identically zero, then

o (kr)l term: electric quadrupole approximation
and comparable magnetic dipole term (B ~ v/c E)

o (/lcr)2 term: electric octupole, magnetic quadrupole

Note that to describe these terms,
have to modify Schrodinger equation to appropriate order in v/c



T he Dipole Approximation

outting ¢ ~ 1. the matrix element is

/‘b?e | ;vﬂbi dPz = iﬁ (e 5j>fi (4)
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i.e., related to the expected momentum of electron j

to bring this into a more familiar form, we note
the basic quantum operator relationship

rjpj—ﬁjrj=2i7if5' (5)



and so given the atomic Hamiltonian
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Hp =
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we have
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a special case of the general result —ihO;A =
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thus the transition rate is
47‘(‘

wii= "5 |(e-d), | T(wps) (10)
where the electric dipole operator IS
d = lej (11)
J

note that generally we have atoms in random orientations
so taking the angle average, we have

e 1
(le-dpil?) = Sldgil? (12)
where

dpi? = ds - dpy = [(da) £4]® 4 [(dy) pil* + (dz) 4] (13)



Electric Dipole Transition Rate

the electric dipole transition rate is thus

47'('2 2
<wfz'> = 3,72 [dil® T(wyi) (14)

thus the Einstein absorption coefficient for £ — u (“lower to
upper’”) is

(wey) = By J(Vpy,) (15)
where J(vy,) = J(vp,)/4m since intensity is in one direction
and J(vp,) = J(wpy,) dw/dv = 27T (wy,), SO

(i) = - Beu T () (16)

» and we can now find all three Einstein coefficients Q: how?



Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:
e true absorption

872 3274
3ch? 3ch
for non-degenerate atomic levels with gy = g, = 1 we have
e stimulated emission

By, = |d€u|2 — |d€u|2 (17)

Buﬁ — Bﬁu (18)
e Sspontaneous emission
213 6474 13, |dy|?
Ay = 5By, = ut v 19
ul 62h fu 3C3h ( )

this gives (at least in principle) a direct means to connect
the radiative coefficients j, and ay
to the atomic properties encoded in the dipole moment d,,
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recall that the absorption coefficient is

h
oy = 4—V ng By, ¢(v) (20)
T

and so writing this in terms of the absorption cross section oy,

ay = ny ¢ op(v) (21)

so that the cross section and Einstein coefficient are related by

hv
opy (V) = 4 By, ¢(v) (22)
T C
integrating and using [ ¢(v) dv = 1, we have
41 ¢
By, == [ o0, (v) dv (23)
Vev

and thus our expressions for By, also give oy,
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Oscillator Strength

If the electron moves as a damped classical oscillator
with natural (resonant) frequency wg
then (PS10) absorption rate is Bg'asscial j(y,,) with

2 2
pclassical _ 4m<e
fu hvy,, mec

it is thus convenient write

Bgu — fEu Bé:qiassical
2
e

O-Eu(’/) — c ffu Qb(V)
e

where the dimensionless oscillator strength is

Qme
3h2gye?

e

fou = @/U@(V) dv =

Q: what about f, 7

(Eu— Ep) Y |dgy|?
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Einstein gyBy,, = guB,y, and since we have absorption

gu Jue = — 9efey

SO emission oscillator strengths are negative

if we sum over all transitions from z — 7,
can show that one-electron atoms have

> fiy=1
7 fina
and N-electron atoms have
> fij=N
7 fina

the Thomas-Riche-Kuhn sum rule

(28)

(29)

(30)



Selection Rules
When is a transition between states ¢+ and f possible?

in general: the transition probability is always nonzero
but can be very small if the transition is suppressed,
usually due to a symmetry

e.g., a forbidden dipole transition can have a nonzero quadrupole
rate

we will focus on selection rules for dipole transitions
where recall that the dipole matrix element is

dp = e/@cz 7 d3a (31)
j

Laporte’s rule:

no transitions between two states of the same parity
®w Q: what is a parity transformation?

Q: why is d;; =0 if i and j have same parity?
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a parity transformation is the mapping v — —7r

note: electron wavefunctions are angular momentum eigenstates
and angular momentum eigenstates are parity eigenstates
thus: wavefunctions have definite parity

Vi (—7) = T (7)), with 7, = £1
thus if m; = Tf then

sz — J'fz = —6/1&?2 ’F} Y; d3£U = —CZ]% (32)
J
and thus J}i =0
the parity of an electron configuration (set of states)
IS set by the electron angular momenta:

parity is (—1)2@, where each electron has ¥¢;

thus we conclude: no transitions between the same configuration
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Note that the atomic wavefunction is really a function
Y(ry, o, ..., 7N) over all N electron coordinates

and at our level of approximation can be written in terms of
single-electron wavefunctions uq(71) up(7) ... up(7n)
where [ufuq d3z =1

thus the dipole operator fF’J picks out the wavefunctions
for a single electron, involving [ u*7; ua d>r;

Q. implications?



the dipole operator only involves [ u*; uq d3r;
for a single electron

thus we conclude

e all other electron wavefunctions remain the same

e one electron jumps per transition

e the transition dipole moment is that of the jumping electron
e in the jump the parity change is (—1)4¢

vector nature of dipole operator imposes conditions on
single electron states in transitions:

YAV
Am

+1 (33)
0, +1 (34)

[
© www: helium allowed transitions
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rules for total angular momentum quantum numbers

AS 0
AL 0,41
AJ = 0,1 except J=0toJ=0

note that we can have AL =0
but always must have A/ = +1

examples:
® 3s 251/2 — 4s 251/2

AV = 0: forbidden!

® 2p 2P; ;5 — 3d *Dg

Al =1, OK!
AL =1, OKI
AS =0, OKI

AJ = 2, forbidden!

(35)
(36)
(37)



